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Abstract

The perturbative approach to quantum field theory using retarded functions is extended to noncommutative theories.
as well as quantized equations of motion are studied and seen to cause problems in the case of space–time noncom
A modified theory is suggested that is unitary and preserves the classical equations of motion on the quantum level.
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Noncommutative Quantum Field Theory (NCQFT) has recently received renewed attention (see[1] for a re-
view). This interest is triggered by its appearance in the context of string theory[2], and by the observatio
that Heisenberg’s uncertainty principle along with general relativity suggests the introduction of noncom
tive space–time[3]. Its mathematical foundations may also be found in Connes’ formulation of noncommu
geometry, Moyal noncommutative field theory has been shown to be compatible with the latter one in the Eu
case[4]. Moreover, it arises in the framework of deformation quantization[5].

Coordinates are considered as noncommuting hermitian operatorsx̂µ, which satisfy the commutation relation

(1)
[
x̂µ, x̂ν

] = iθµν.

We will assume the antisymmetric matrixθµν to be constant. The algebra of these noncommuting coord
operators can be realized on functions on the ordinary Minkowski space by introducing the Moyal�-product

(2)(f � g)(x) = e
i
2θµν∂

ξ
µ∂

η
ν f (x + ξ)g(x + η)

∣∣
ξ=η=0.
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To obtain a NCQFT from a commutative QFT, one replaces the ordinary product of field operators by t
product in the action. Due to the trace property of the star product, meaning that

(3)
∫

dx (f1 � · · · � fn)(x)

is invariant under cyclic permutations, the free theory is not affected and noncommutativity only appear
interaction part. As an example, the interaction in noncommutativeϕ3

� -theory reads

(4)Sint = g

3!
∫

dx (ϕ � ϕ � ϕ)(x).

A first suggestion for perturbation theory has been made in[6], where the Feynman rules for the ordinary Q
are only modified by the appearance of momentum-dependent phase factors at the vertices. These are o
e−ip∧q , with p ∧ q = 1

2pµθµνqν . In the case of only space–space noncommutativity, i.e.,θ0i = 0, this approach
leads to the UV/IR mixing problem, a renormalizable model has been suggested in[7]. The general case of spac
time noncommutativity, i.e.,θ0i �= 0, raises problems at an earlier stage due to the nonlocality of the star pr
which involves time-derivatives to arbitrary high orders. It has been shown that the S-matrix is no longer
as the cutting rules are violated[8], the corresponding calculation involves only the tree level and the finite pa
the one-loop level.

To cure this problem, a different perturbative approach, TOPT, has been suggested for scalar theories[9]. It
mainly builds on the observation that for space–time noncommutativity time-ordering and star product of
tors are not interchangeable, their order matters. Defining TOPT by carrying out time-orderingafter taking star
products, a manifestly unitary theory is obtained.

However, further problems arise. The explicit violation of causality inside the region of interaction was dis
in [10], however, this alone does not spoil the consistency of the formalism. In[11] it has been shown that War
identities in NCQED are violated if TOPT is applied, which could be traced back to altered current conse
laws on the quantized level[12]. Moreover, remaining Lorentz symmetry, i.e., Lorentz transformations, w
leave the noncommutativity parameterθµν invariant, is not respected by TOPT[13].

To formulate a consistent perturbative approach to space–time noncommutative theories is thus still
work on. One recent suggestion building on the observation of violated remaining Lorentz symmetry in TO
been made in[14], another one starts from the Yang–Feldman equations[15]. In this Letter we want to investigat
the approach via retarded functions as introduced in the commutative case in[16] and further elaborated in[17],
a pedagogical presentation may also be found in[18]. In this formalism, retarded functions are used instea
time-ordered Green’s functions, the motivation is that the usage of the first ones allows an easier deriv
unitarity and causality due to certain support properties of retarded functions. We will extend this approa
natural way to noncommutative theories and investigate unitarity as well as quantized equations of mot
latter is motivated by its similarity to current conservation laws: if classical equations of motion are not alte
the quantum level also classical current conservation laws will remain valid on the quantized level. We w
both unitarity as quantized equations of motion to be disturbed in a specific way that allows to modify the
such that it is unitary and preserves the classical equations of motion on the quantum level.

2. The commutative case

2.1. Retarded functions and the generating functional

We consider a field theory with a single hermitian fieldφ of massm. The retarded products are then given
retarded multiple commutators ofφ:

(5)R(x;x1, . . . , xn) = (−i)n
∑

ϑ
(
x0 − x0

1

) · · ·ϑ(
x0
n−1 − x0

n

)[· · · [φ(x),φ(x1)
] · · ·φ(xn)

]
,

perm
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where the summation is taken over all permutations of then coordinatesxi , ϑ denotes the step function. Th
support propertyR(x;x1, . . . , xn) �= 0 only for x0 � x0

1, . . . , x0
n is immediately clear from this definition. Th

retarded functions are now defined as the vacuum expectation values of the retarded products,

(6)r(x;x1, . . . , xn) = 〈0|R(x;x1, . . . , xn)|0〉,
and with their help the S-matrix may be obtained by a reduction formula as elaborated by Lehmann, Sy
and Zimmermann in[16], the amputation of external legs works as usual through multiplication by the in
propagator.

To compute retarded functions we follow[18] and introduce the generating functional

R[j ′, j ] = exp

{
2
∫

dx sin

(
1

2

δ

δj (x)

δ

δ δ
δj ′(x)

)∫
dyLint

(
δ

δj ′(y)

)}

(7)× exp

{∫
dzdw

(
1

4
j ′(z)∆(1)(z − w)j ′(w) − j ′(z)∆ret(z − w)j (w)

)}
,

where∆ret is a Green’s function to the Klein–Gordon equation

(8)∆ret(x) = lim
ε→+0

−1

(2π)4

∫
d4k

e−ikx

(k + iε)2 − m2

with the support property∆ret(x) = 0 for x0 < 0 and∆(1) is given by

(9)∆(1)(x) = 1

(2π)3

∫
d4k δ

(
k2 + m2)e−ikx

being a solution to the homogeneous Klein–Gordon equation:(� + m2)∆(1)(x) = 0.
Retarded functions are obtained by means of functional differentiation:

(10)r(x;x1, . . . , xn) = δ

δj ′(x)

δn

δj (x1) · · · δj (xn)
R[j ′, j ]

∣∣∣∣
j ′=j=0

.

2.2. Diagrammatic rules

For later purpose, we want to write the outcome of Eq.(10) in the form of diagrams. Its lines will obviousl
carry∆ret or ∆(1), and forr(x;x1, . . . , xn) there will be endpointsx, x1, . . . , xn.

To see which diagrams are allowed according to(10), we expand the first exponential in(7) in the example of
Lint = gφm:

R[j ′, j ] = 1+
∞∑

n=1

1

n!
n∏

i=1

∫
dyi 2 sin

(
1

2

δ

δj (yi)

δ

δ δ
δj ′(yi )

)∫
dzi g

m δm

δj ′(zi)m

(11)× exp

{∫
dy dz

(
1

4
j ′(y)∆(1)(y − z)j ′(z) − j ′(y)∆ret(y − z)j (z)

)}
.

Recalling that

(12)r(x;x1, . . . , xn) = δ

δj ′(x)

δn

δj (x1) · · · δj (xn)
R[j ′, j ]

∣∣∣∣
j ′=j=0

we see thatx is connected by∆ret(x −a) or ∆(1)(z−a) = ∆(1)(a−z), the pointsxi are connected by∆ret(ai −xi);
a, a being some inner or outer points.
i
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) in the sin can only act on δm

δj ′(zi )
m , such that by expanding sin we can make the replacemen

∫
dyi 2 sin

(
1

2

δ

δj (yi)

δ

δ δ
δj ′(yi )

)∫
dzi g

m δm

δj ′(zi)m

(13)≡ 2
∑

j�[ m−1
2

]g
m

∫
dzi

1

(2j + 1)!
(

1

2

)2j+1
δ2j+1

δj (zi)2j+1

δm−2j−1

δj ′(zi)m−2j−1

such that at the vertexzi we have an odd power of δ
δj (zi )

. As an incoming∆ret(a − zi) at vertexzi can only be

created by δ
δj (zi )

and vice versa, we find that the number of incoming∆ret-functions at each vertex must be odd
One checks that there are no further restrictions to diagrams as the ones mentioned above, so we have

diagrammatic rules for the retarded functionr(x;x1, . . . , xn):

1. x, x1, . . . , xn are the endpoints of the diagram, inner points are called vertices.
2. ∆ret(x − y) is symbolized by ∆(1)(x − y) = ∆(1)(y − x) by .
3. x is connected by one line,∆ret(x − a) or ∆(1)(x − a). The pointsxi are also connected by one line ea

∆ret(ai − xi).
4. The number of lines at each vertex ism for φm-theory, the contributing factorg, one integrates over th

vertices.
5. The number of incoming functions∆ret(ai − zi) at each vertexzi is odd.

3. The noncommutative case

We implement noncommutativity by defining retarded functions via the generating functional(7), where the
interaction now involves the star product, e.g., in noncommutativeφ3

� -theorySint = g
3!

∫
dx (φ � φ � φ)(x). This

results in star multiplication at each vertex. In the Fourier representation of the retarded functions we thus e
at every vertex a noncommutative phase factorV (±p1, . . . ,±pm) if p1, . . . , pm are the momenta flowing

{
in
out

}
of

the vertex. This phase factor is given by them-point function at first order, e.g., inφ3-theory it reads

(14)V (p1,p2,p3) = 1

6

∑
πεS3

e−i(pπ(1),pπ(2),pπ(3)).

Here we made use of the abbreviation

(15)(p1, . . . , pn) =
∑
i<j

pi ∧ pj ,

where the∧-product is defined asp ∧ q = i
2pµθµνqν .

In space–time noncommutative theories this way of introducing retarded functions will not respect their
properties, i.e., in general we will also outside the regionx0 � x0

1, . . . , x0
n have non-vanishingr(x;x1, . . . , xn).

This is due to the fact that forθ0i �= 0 the star product involves time-derivatives, such that one smears ov
time coordinate. It is therefore clear that one can no longer obtain the so-defined retarded functions from
products of the form(5), as they were originally introduced. However, we still consider the theory worth t
further studied, and compute S-matrix elements by using the reduction formula.

To obtain diagrammatic rules for the noncommutative case, the ones from the previous subsection only
be supplemented by the rule

6. At every vertexx we perform star multiplication with respect tox.
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3.1. Unitarity

To analyze unitarity, we follow closely the presentation in[18]. There the generalized unitarity condition

(16)R[0, j ] = 1

is derived which implies unitarity for the S-matrix. The analysis of this condition in noncommutative theorie
be the aim of this section. We consider the case ofφm-theory and start with performing a Taylor expansion of
first exponential in(7):

R[0, j ] = 1+
∞∑

n=1

1

n!
n∏

i=1

∫
dyi 2 sin

(
1

2

δ

δj (yi)

δ

δ δ
δj ′(yi )

)∫
dzi g

m δm

δj ′(zi)m

(17)× exp

{∫
dy dz

(
1

4
j ′(y)∆(1)(y − z)j ′(z) − j ′(y)∆ret(y − z)j (z)

)}∣∣∣∣∣
j ′=0

.

Each factor in thenth term (n � 1) of the sum contains at least one functional derivativeδ/δj (zi) such that we
obtain

∏n
i=1

∫
dxi j

′(xi)∆
ret(xi − zi) in front of the exponential, which does not vanish forj ′ = 0 only if every

factor is differentiated with someδ/δj ′(zj ). This means that at each vertexzi we have an ending∆ret(a − zi), and
the pointa must be again out of the{zi}ni=1, which implies that we have a closed cycle of∆ret-functions, i.e., an
expression of the form

(18)∆ret(z1 − z2)
z2
� ∆ret(z2 − z3)

z3
� · · · zk

� ∆ret(zk − z1)
z1
� .↑

The last statement can be seen as follows: choosezi1, which appears in a function∆ret(a − zi1), a among the
zi ’s, saya = zi2. Either zi2 = zi1 and we have found a closed cycle, orzi2 �= zi1 in which case we proceed b
finding zi3 such that∆ret(zi3 − zi2) appears. In the casezi3 = zi1 or zi3 = zi2 we are finished, otherwise we go o
in the same way. The limited number of points{zi}ni=1 implies that the procedure will stop and yield a closed cy
of ∆ret-functions.

This means that the only terms which spoil the unitarity condition(16)contain a closed cycle of∆ret-functions.
Let us first consider the caseθ0i = 0, where the star product does not involve time derivatives. From the su
property

(19)∆ret(x) �= 0 only forx0 > 0

we find as a condition that(18)does not vanish

(20)z0
1 > z0

2 > · · · > z0
k > z0

1,

which cannot be fulfilled, meaning that(18) is zero.
However, in the general case of space–time noncommutativity, one can no longer use this argument

then taking star products contains a smearing over the time coordinates. In fact, it was argued in[15], that, e.g.,
∆ret(x) � ∆ret(−x) �= 0. The diagrams involving expressions(18) thus are the ones which violate unitarity if tim
does not commute with space.

3.2. Composite operators: equations of motion and currents

To derive equations of motion on the quantized level, i.e., on the level of retarded functions, we define r
functionsrO(x;x1, . . . , xn) for a composite operatorO at placex and single fields atx1, . . . , xn in the following
way. We differentiate the generating functional byδ/δj ′(x) once for every single field appearing inO and by
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δn

δj (x1)···δj (xn)
. ForO in the formO = D1φ � D2φ � · · · � Dkφ with Di differential operators this means

(21)

rD1φ�D2φ�···�Dkφ(x;x1, . . . , xn) ≡ D1
δ

δj ′(x)
� D2

δ

δj ′(x)
� · · · � Dk

δ

δj ′(x)

δn

δj (x1) · · · δj (xn)
R[j ′, j ]

∣∣∣∣
j ′=j=0

,

e.g.,

(22)rφ�(�+m2)φ(x;x1, . . . , xn) ≡ δ

δj ′(x)
�

(�x + m2) δ

δj ′(x)

δn

δj (x1) · · · δj (xn)
R[j ′, j ]

∣∣∣∣
j ′=j=0

.

Diagrammatic rules forrO(x;x1, . . . , xn) with O = D1φ � D2φ � · · · � Dkφ can be easily read off, the on
change to the previous rules lies in how the pointx is treated, we therefore replace rule 3 by

3′. x is connected byk lines; theith line carriesDi∆
ret(x − ai) or Di∆

(1)(x − ai). The pointsxi are connected
by one line each,∆ret(bi − xi). Star multiplication with respect tox is performed.

As an example of equations of motion and current conservation laws we now want to prove the bilinear e
of motion inφ3

� -theory, which classically reads

(23)φ �
(� + m2)φ = gφ � φ � φ,

on the level of retarded functions, i.e., show that

(24)rφ�(�+m2)φ(x;x1, . . . , xn) = rgφ�φ�φ(x;x1, . . . , xn) + c.t.,

with c.t. meaning contact terms. We will evaluate both sides of the above equation diagrammatically:

rφ�(�+m2)φ(x;x1, . . . , xn) =

=
∫

dy +
n∑

k=1

,

where the dashed arrow line can be or , and the dashed line stands for ,
or . We have used(� + m2)∆(1)(x) = 0 to skip diagrams that have a line∆(1) betweenx andy,

respectively,x andxk .
Applying (� + m2)∆ret(x) = δ(x) we recognize the last diagram as contact terms, such that

(25)rφ�(�+m2)φ(x;x1, . . . , xn) = + c.t.
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The right-hand side of Eq.(24)yields in terms of diagrams

(26)rgφ�φ�φ(x;x1, . . . , xn) =

To investigate under which conditions both sides are equal up to contact terms, we need to analyze und
conditions diagrams belonging to(25) with a dashed line being a∆ret-function that points tox are zero. At first,
we prove the following

Lemma 1. A diagram having at each vertex at least one incoming∆ret-function attached and the endpoints co
nected by outgoing∆ret-functions contains a closed cycle of∆ret-functions.

Proof. Let {zi}ni=1 be the set of vertices, at eachzi we have a function∆ret(ai − zi), andai must, as the oute
points are connected by outgoing∆ret-functions, be itself out of{zi}ni=1. We can now use the same argumentat
as in the discussion of unitarity to obtain a closed cycle of∆ret-functions. �

If we consider the pointx not as an endpoint but a vertex of the diagram, we find that diagrams belong
(25) with a dashed line being a∆ret-function that points tox contain a closed cycle of∆ret-functions. From our
discussion of closed cycles of∆ret-functions in the previous section we know that these vanish forθ0i = 0 but not
necessarily otherwise. We have thus found that the classical bilinear equation of motion holds on the quan
in the case of only spatial noncommutativity. However, it will be disturbed by diagrams containing closed
of ∆ret-functions if time does not commute with space. This results generalizes to quantum current cons
laws, which are derived in a similar manner.

3.3. A modified theory

Let us first summarize our results so far. For space–time noncommutativity unitarity has turned out to be
and the classical equations of motion and currents do not hold on the quantized level. In both cases these u
outcomes are exactly due to diagrams which contain a closed cycle of∆ret-functions. Their vanishing forθ0i = 0
is the reason that in this case the approach via retarded functions yields a unitary theory and respects the
equations.

The motivation to modify the theory is to obtain a theory which is unitary and preserves the classical eq
of motion, therefore current conservation laws, on the tree-level and the finite part of the one-loop-level.

With the above results, it is obvious that we encounter these properties if we alter the theory by the requ
that we do not allow diagrams which exhibit a closed cycle of∆ret-functions. This modified theory can probab
not be derived from a functional like(7), instead it is defined by the diagrammatic rules of Section2.2 together
with the rules of Section3 and Section3.2 if we impose the additional requirement

7. A diagram must not contain a closed cycle of∆ret-functions.

As diagrams which are excluded by the above rule vanish forθ0i = 0 the equivalence of the modified theory w
the ordinary one derived from(7) in the case of only spatial noncommutativity is evident.

Let us briefly comment on Lorentz covariance: each diagram only involves expressions which are co
under Lorentz transformations (if we also transformθµν ), thus are Lorentz-covariant. This property is theref
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not disturbed by excluding a certain type of diagrams, meaning that the modified theory is still Lorentz co
We will thus expect it to respect remaining Lorentz symmetry.

4. Conclusions

We have extended retarded functions to noncommutative quantum field theories and analyzed the resu
turbation theory. In space–time noncommutative theories we have found that unitarity is violated and the c
equations of motion and currents are not respected on the quantum level. Both unpleasant results can b
to the same type of diagrams, which vanish in the case of only spatial noncommutativity. Modifying the the
explicitly forbidding them yields a theory which has the desired properties of being unitary and respecting c
equations of motion and currents on the quantum level. This theory is defined by a set of diagrammatic r
vanishingθ0i it coincides with the unmodified approach.
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