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Abstract

The perturbative approach to quantum field theory using retarded functions is extended to noncommutative theories. Unitarity
as well as quantized equations of motion are studied and seen to cause problems in the case of space-time nhoncommutativity
A modified theory is suggested that is unitary and preserves the classical equations of motion on the quantum level.
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1. Introduction

Noncommutative Quantum Field Theory (NCQFT) has recently received renewed attenti¢h] (keea re-
view). This interest is triggered by its appearance in the context of string tHghrnand by the observation
that Heisenberg’s uncertainty principle along with general relativity suggests the introduction of noncommuta-
tive space—timé3]. Its mathematical foundations may also be found in Connes’ formulation of noncommutative
geometry, Moyal noncommutative field theory has been shown to be compatible with the latter one in the Euclidean
casg4]. Moreover, it arises in the framework of deformation quantizaf&gn

Coordinates are considered as noncommuting hermitian opefatowehich satisfy the commutation relation

[##, "] = i6". @)

We will assume the antisymmetric mati¥” to be constant. The algebra of these noncommuting coordinate
operators can be realized on functions on the ordinary Minkowski space by introducing thedvogaluct

(f )0 = 2”0 f (e 1 E)g (x4 m)| g @
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To obtain a NCQFT from a commutative QFT, one replaces the ordinary product of field operators by the star
product in the action. Due to the trace property of the star product, meaning that

/a’x froe-x fu)(2) @3)

is invariant under cyclic permutations, the free theory is not affected and noncommutativity only appears in the
interaction part. As an example, the interaction in noncommutafivéaeory reads

Sint = % dx (@ @ * ) (x). 4)

A first suggestion for perturbation theory has been madeé]irwhere the Feynman rules for the ordinary QFT
are only modified by the appearance of momentum-dependent phase factors at the vertices. These are of the forn
eTiPN with p A g = %p,ﬁ‘“’qu. In the case of only space—space noncommutativity,d% = 0, this approach
leads to the UV/IR mixing problem, a renormalizable model has been sugge$tédiihe general case of space—
time noncommutativity, i.e4% = 0, raises problems at an earlier stage due to the nonlocality of the star product,
which involves time-derivatives to arbitrary high orders. It has been shown that the S-matrix is no longer unitary
as the cutting rules are violat¢8], the corresponding calculation involves only the tree level and the finite part of
the one-loop level.

To cure this problem, a different perturbative approach, TOPT, has been suggested for scalar th@jriks in
mainly builds on the observation that for space—time noncommutativity time-ordering and star product of opera-
tors are not interchangeable, their order matters. Defining TOPT by carrying out time-orafteingaking star
products, a manifestly unitary theory is obtained.

However, further problems arise. The explicit violation of causality inside the region of interaction was discussed
in [10], however, this alone does not spoil the consistency of the formalisfil1lrit has been shown that Ward
identities in NCQED are violated if TOPT is applied, which could be traced back to altered current conservation
laws on the quantized lev§l2]. Moreover, remaining Lorentz symmetry, i.e., Lorentz transformations, which
leave the noncommutativity parametef” invariant, is not respected by TORT3].

To formulate a consistent perturbative approach to space—time noncommutative theories is thus still a task to
work on. One recent suggestion building on the observation of violated remaining Lorentz symmetry in TOPT has
been made ifil4], another one starts from the Yang—Feldman equafitsis In this Letter we want to investigate
the approach via retarded functions as introduced in the commutative cd$3 and further elaborated ii.7],

a pedagogical presentation may also be founflL8j. In this formalism, retarded functions are used instead of
time-ordered Green’s functions, the motivation is that the usage of the first ones allows an easier derivation of
unitarity and causality due to certain support properties of retarded functions. We will extend this approach in a
natural way to noncommutative theories and investigate unitarity as well as quantized equations of motion. The
latter is motivated by its similarity to current conservation laws: if classical equations of motion are not altered on
the quantum level also classical current conservation laws will remain valid on the quantized level. We will find
both unitarity as quantized equations of motion to be disturbed in a specific way that allows to modify the theory
such that it is unitary and preserves the classical equations of motion on the quantum level.

2. Thecommutative case
2.1. Retarded functions and the generating functional

We consider a field theory with a single hermitian figldf massn. The retarded products are then given by
retarded multiple commutators ¢f

Rxixt, ..., x) = (=)" Y 00 =x) -0 (xd_ g —xd)[--- [6(x). p(x1)] - B (x)], ()

perm
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where the summation is taken over all permutations ofrttmordinatesy;, ¥ denotes the step function. The
SUppOrt Propertyr (x; x1, ..., x,) # 0 only for x0 > x9, ..., x0 is immediately clear from this definition. The

retarded functions are now defined as the vacuum expectation values of the retarded products,

r(x;x1,...,x5) = (O|R(x; x1, ..., x,)|0), (6)

and with their help the S-matrix may be obtained by a reduction formula as elaborated by Lehmann, Symanzik
and Zimmermann if16], the amputation of external legs works as usual through multiplication by the inverse
propagator.

To compute retarded functions we follgt8] and introduce the generating functional

S n(t 0 8 (=2
RIj ,J]_exp{Z/dx&n(ZSj(x)aL)/dyﬁmt<5j/(y)>}

8j"(x)
1
x exp{ f dzdw(zﬂzm(l’(z —w)j'w) = j' (@) Az — w)j(w)) } @
whereA™!is a Green’s function to the Klein—-Gordon equation
-1 e*ikx
A™®(x) = lim / d*k 8
=102 k+ie)? —m2 ®
with the support property\t(x) = 0 for x° < 0 andA® is given by
@ _ 4 2 2\ —ikx
A (x)_W/d k8 (k= +m®)e 9)

being a solution to the homogeneous Klein-Gordon equatior: m2) A® (x) = 0.
Retarded functions are obtained by means of functional differentiation:

8}1
= RIi, j . 10
570 878 G o

r(X;Xx1,...,%,)

2.2. Diagrammatic rules

For later purpose, we want to write the outcome of @d) in the form of diagrams. Its lines will obviously
carry A" or AD and forr(x; x1, ..., x,) there will be endpoints, x1, ..., x,.

To see which diagrams are allowed accordingli®), we expand the first exponential (i) in the example of
Lint = g¢™:

R[,-/,,-]=1+iiﬁfdy,.25m e ) [ e
ot 28j(yi) 8 8j" zi)™

87" (vi)
1
x exp{ / dy dz(zﬂym(l’ O —-2j'@—jMA™® - Z)j(z))}. (11)
Recalling that
8"
CX1y ey Xp) = — . , RIi, j 12
F(XIX1, ... Xn) 5700 3 ) 81 ) [/ Jl i (12)

we see that is connected byr\™{(x —a) or A (z —a) = AD (a — 7), the pointsy; are connected by (a; — x;);
a, a; being some inner or outer points.



278 T. Reichenbach / Physics Letters B 612 (2005) 275-282

8 . . 8m . .
TheS/S(W) in the sin can only act OByt » such that by expanding sin we can make the replacement

1 s 3 L
dy; 2sin dzi " ———
25J(y,)5 ,( 5 8j' (zi)m

1 1 2j+1 §2i+1 sm—2j-1
=2 "N dzyy ——m—r| = - - 13
.<[Zm—1]g [ <2j+1>!<2) 57 G 3 Gy (13)
Alva

such that at the vertex we have an odd power (%-f‘s— As an incomingA™Y(a — z;) at vertexz; can only be

created by— and vice versa, we find that the number of incomiti§-functions at each vertex must be odd.
One checks that there are no further restrictions to diagrams as the ones mentioned above, so we have found th
diagrammatic rules for the retarded functic@x; x1, ..., x,):

1. x,x1,...,x, are the endpoints of the diagram, inner points are called vertices.

2. A™Y(x —y) is symbolized by, AV (x —y) = AD(y —x) by ;7

3. x is connected by one lineA™(x — a) or A (x — a). The pointsx; are also connected by one line each,
ArEt(ai - xi).

4. The number of lines at each vertexnsfor ¢™-theory, the contributing factog, one integrates over the
vertices.

5. The number of incoming function$"'(a; — z;) at each vertex; is odd.

3. The noncommutative case

We implement noncommutativity by defining retarded functions via the generating funct®nalhere the
interaction now involves the star product, e.g., in noncommutatfxheory Sint = £ [dx (¢ x ¢ x ¢)(x). This
results in star multiplication at each vertex. In the Fourier representation of the retarded functions we thus encounter
at every vertex a noncommutative phase faétot-p1, ..., £py) if p1,..., pn are the momenta flowin{gg’l]t} of

the vertex. This phase factor is given by thepoint function at first order, e.g., ip3-theory it reads

1 .
V(p1. p2. p3) = ¢ D e P PrPrd) (14)
TeS3
Here we made use of the abbreviation
(P12 P0)=Y_Di A D), (15)
i<j

where thea-product is defined ag A g = %p,ﬁ’“’qv.

In space—time noncommutative theories this way of introducing retarded functions will not respect their support
properties, i.e., in general we will also outside the regrSrB x‘f, e Xy 0 have non- vanishing (x; x1, ..., x,).
This is due to the fact that f&t% = 0 the star product involves time-derivatives, such that one smears over the
time coordinate. It is therefore clear that one can no longer obtain the so-defined retarded functions from retarded
products of the form(5), as they were originally introduced. However, we still consider the theory worth to be
further studied, and compute S-matrix elements by using the reduction formula.

To obtain diagrammatic rules for the noncommutative case, the ones from the previous subsection only have to
be supplemented by the rule

6. At every vertexx we perform star multiplication with respect to
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3.1. Unitarity

To analyze unitarity, we follow closely the presentatioiilil]. There the generalized unitarity condition
RIO, j1=1 (16)

is derived which implies unitarity for the S-matrix. The analysis of this condition in noncommutative theories will
be the aim of this section. We consider the cas¢’ditheory and start with performing a Taylor expansion of the
first exponential in(7):

o0 1 n 1 5 s o
RIO, j1=1+Y = /d-Zsin . /dz‘ m "
[ J] r;n'll:!_ . (28]()71')8 8 ) i8 8]/(Zj)m

87" (yi)

1
x exp{ / dy dz(;lj%ym(l)(y —2)j'(2) = j' () A™(y — z)j(z)) } (17)

j'=0

Each factor in theith term ¢ > 1) of the sum contains at least one functional derivadixéy (z;) such that we
obtain[¢_; / dx; j'(x;) A™Y(x; — z;) in front of the exponential, which does not vanish fior= 0 only if every
factor is differentiated with som&/§;’(z;). This means that at each vertgxwe have an ending\"®Y(a — z;), and
the pointa must be again out of thi;}?_,, which implies that we have a closed cycleaff-functions, i.e., an
expression of the form

A¢ret(Z1 —22) ¥ A2y — zg) ¥ oo ¥ A®g — 21) Zf : (18)

The last statement can be seen as follows: chegs&vhich appears in a function™'(a — z;,), a among the
zi's, saya = z;,. Eitherz;, = z;; and we have found a closed cycle, %y # z;, in which case we proceed by
finding z;, such thatA™Y(z;, — z;,) appears. In the casg, = z;, oOr z;;, = z;, We are finished, otherwise we go on
in the same way. The limited number of poifts}?_, implies that the procedure will stop and yield a closed cycle
of A™%functions.

This means that the only terms which spoil the unitarity conditic) contain a closed cycle af™!-functions.
Let us first consider the cag@ = 0, where the star product does not involve time derivatives. From the support

property

A®(x)£0 onlyforx®>0 (19)
we find as a condition thg18) does not vanish

9>20> 570>, (20)

which cannot be fulfilled, meaning théit8) is zero.
However, in the general case of space—time noncommutativity, one can no longer use this argumentation, as
then taking star products contains a smearing over the time coordinates. In fact, it was arfdiddthat, e.g.,
A™(x) x A™(—x) # 0. The diagrams involving expressiofis8) thus are the ones which violate unitarity if time
does not commute with space.

3.2. Composite operators: equations of motion and currents
To derive equations of motion on the quantized level, i.e., on the level of retarded functions, we define retarded

functionsr® (x; x1, ..., x,) for a composite operata® at placex and single fields at, ..., x, in the following
way. We differentiate the generating functional &5;'(x) once for every single field appearing & and by
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m For O in the formO = D1¢ x D2¢ % - - - x D¢ with D; differential operators this means

8 8 8 8"

D10 D20x A DD (x x1, L xn) = Di—— * Do—— % D — . —RIj’, /] ,

8j"(x) 8j'(x) 8j'(x) 8j(x1)---8j(xn) j'=j=0
(21)

e.g.,
$x(O+mDp (. __ 9 2y 8 3" g
r (X5 X1, s Xn) = 7 — * (Ox +m%) — . —RIj", jl (22)
s (x) (s )81’(x) 8j (x1) - -+ 8j (xn) j1=j=0

Diagrammatic rules for©(x; x1, ..., x,) With © = D1¢ x D2¢ x --- x D¢ can be easily read off, the only
change to the previous rules lies in how the paiig treated, we therefore replace rule 3 by

3. x is connected by lines; theith line carriesD; A™'(x — a;) or D; AY (x — g;). The pointsy; are connected
by one line eachA™!(b; — x;). Star multiplication with respect tois performed.

As an example of equations of motion and current conservation laws we now want to prove the bilinear equation
of motion in¢3-theory, which classically reads

¢ (O+m?)p=gpxp*o, (23)
on the level of retarded functions, i.e., show that
pO*(O+m?)g (X3 X1y ooy Xp) = 8PP (0 xq, ... x0) + CL (24)

with c.t. meaning contact terms. We will evaluate both sides of the above equation diagrammatically:

x

’/,"\\\ (D n mz)
PO () =
ry .- CC"
X
|:| +m?) P
,‘/
/ N @O +m?)
dy + :
Ty
ry - ITp T
where the dashed arrow line-+---- can be—»—- or——— and the dashed line-------- stands foF———,

or — We have used + m?) A® (x) = 0 to skip diagrams that have a liné? betweenr andy,
respectivelyx andux.
Applying (00 4+ m?) A™Y(x) = 5(x) we recognize the last diagram as contact terms, such that

T
/’\

Fi

po+@+m9 (X;x1,...,%,) = +c.t. (25)

Xy e Tp
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The right-hand side of Eq24) yields in terms of diagrams

s

PP (x xq, . X)) = (26)

X1 - Tp

To investigate under which conditions both sides are equal up to contact terms, we need to analyze under which
conditions diagrams belonging (85) with a dashed line being a™-function that points toc are zero. At first,
we prove the following

Lemma 1. A diagram having at each vertex at least one incomiig-function attached and the endpoints con-
nected by outgoing\"*'-functions contains a closed cycle #f-functions.

Proof. Let {z;}!_; be the set of vertices, at eaghwe have a functiom'(a; — z;), anda; must, as the outer
points are connected by outgoing®-functions, be itself out ofz;}?_,. We can now use the same argumentation
as in the discussion of unitarity to obtain a closed cycle\&f-functions. O

If we consider the point not as an endpoint but a vertex of the diagram, we find that diagrams belonging to
(25) with a dashed line being a"-function that points tor contain a closed cycle aA™-functions. From our
discussion of closed cycles af®-functions in the previous section we know that these vanist%o 0 but not
necessarily otherwise. We have thus found that the classical bilinear equation of motion holds on the quantum level
in the case of only spatial noncommutativity. However, it will be disturbed by diagrams containing closed cycles
of A% functions if time does not commute with space. This results generalizes to quantum current conservation
laws, which are derived in a similar manner.

3.3. A modified theory

Let us first summarize our results so far. For space—time noncommutativity unitarity has turned out to be violated
and the classical equations of motion and currents do not hold on the quantized level. In both cases these unpleasar
outcomes are exactly due to diagrams which contain a closed cyed&®functions. Their vanishing fo#% =0
is the reason that in this case the approach via retarded functions yields a unitary theory and respects the classice
equations.

The motivation to modify the theory is to obtain a theory which is unitary and preserves the classical equations
of motion, therefore current conservation laws, on the tree-level and the finite part of the one-loop-level.

With the above results, it is obvious that we encounter these properties if we alter the theory by the requirement
that we do not allow diagrams which exhibit a closed cycleA8¥-functions. This modified theory can probably
not be derived from a functional lik€), instead it is defined by the diagrammatic rules of Seci@together
with the rules of Sectio and Sectior8.2if we impose the additional requirement

7. Adiagram must not contain a closed cyclesf-functions.

As diagrams which are excluded by the above rule vanisi%oe 0 the equivalence of the modified theory with
the ordinary one derived froifY) in the case of only spatial noncommutativity is evident.

Let us briefly comment on Lorentz covariance: each diagram only involves expressions which are covariant
under Lorentz transformations (if we also transfatffY), thus are Lorentz-covariant. This property is therefore
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not disturbed by excluding a certain type of diagrams, meaning that the modified theory is still Lorentz covariant.
We will thus expect it to respect remaining Lorentz symmetry.

4. Conclusions

We have extended retarded functions to noncommutative quantum field theories and analyzed the resulting per-
turbation theory. In space—time noncommutative theories we have found that unitarity is violated and the classical
equations of motion and currents are not respected on the quantum level. Both unpleasant results can be ascribe
to the same type of diagrams, which vanish in the case of only spatial noncommutativity. Modifying the theory by
explicitly forbidding them yields a theory which has the desired properties of being unitary and respecting classical
equations of motion and currents on the quantum level. This theory is defined by a set of diagrammatic rules, for
vanishingd? it coincides with the unmodified approach.
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