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Abstract

We study remaining Lorentz symmetry, i.e., Lorentz transformations which leave the noncommutativity pa#éthieteari-
ant, within the approach of time-ordered perturbation theory (TOPT) to space—time noncommutative theories. Their violation
is shown in a simple scattering process. We argue that this results from the noncovariant transformation properties of the phase
factors appearing in TOPT.
0 2004 Elsevier B.V. All rights reserved.
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1. Introduction general relativity suggests the introduction of noncom-
mutative space—timia].

Coordinates are there considered as noncommuting
Hermitian operatorg#, which satisfy the commuta-
tion relation

Noncommutative quantum field theory (NCQFT)
has recently received renewed attention (dgdor a
review). This interest is triggered by its appearance in
the context of string theor{2], and by the observa- [#7, 2] =i6m. (1)

tion that Heisenberg’s uncertainty principle along with . ) )
We will assume the antisymmetric matd%'” to be

constant. The algebra of these nhoncommuting coor-
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*-product

(f x9) @) =2 0 (e 4 )5+ 1)y, o D

To obtain a NCQFT from a commutative QFT, one re-
places the ordinary product of field operators by the
star product in the action. Due to the trace property of
the star product, meaning that

/dx (fix--* fu)(x) (3

is invariant under cyclic permutations, the free theory
is not affected and noncommutativity only appears in
the interaction part. As an arple, the interaction in
noncommutative-theory reads
8
Sint = 5 (4)
A first suggestion for perturbation theory has been

made in[4], where the Feynman rules for the ordi-
nary QFT are only modified by the appearance of

dx (¢ x @ % ¢)(x).

T. Reichenbach / Physics Letters B 606 (2005) 403-407

the so-called time-like and light-like one (see, e.g., the
discussion irf9]). Here we consider the time-like one.
In the standard form for this cagé” reads

0 6 0 0
9, 0 0 0

7Y e

=10 o o g, ®)
0 0 -6, O

which remains invariant under transformations out of
01, 1) x O2) C El. ThereforeS0O(1, 1) x SO(2)

is expected to be a remaining symmetry group. How-
ever, we will show in the following that this symmetry
is not respected by TOPT.

Section2 proves this statement by calculating a
tree-level scattering amplitude in scalar noncommu-
tative ¢3-theory in two different frames, being re-
lated two each other by a transformation out of the
above symmetry group. The results will differ from
each other. We will argue in Sectidhthat this fail-
ure results from the noncovariant transformations of

momentum-dependent phase factors at the vertices.the phase factors.

These are of the formr P24, with p Aq = 50" g,
Problems arise due to the nonlocality of the star prod-
uct, which involves derivatives to arbitrary high or-
ders. The S-matrix is no longer unitary in the case of
space—time noncommutativity, i.6% # 0, as the cut-
ting rules are violategb].

To cure this problem, a different perturbative ap-

proach, TOPT, has been suggested for scalar theo-

ries in [6]. It mainly builds on the observation that
for space—time noncommuteity time-ordering and

star product of operators are not interchangeable, their

order matters. Defining TOPT by carrying out time-
orderingafter taking star products, a manifestly uni-
tary theory is obtained. The Feynman rules are con-
siderably more complicated, ordinary propagators are
no longer found but split up into two contributions.
Another characteristic is the form of the phase factors,
they depend on the internal momeugtanly through

the on-shell quantitieg* = (AE,, ), > = 1.

However, further problems arise. [#] it has been
shown that Ward identities in NCQED are violated if
TOPT is applied, which could be traced back to altered
current conservation laws on the quantized |§&!

In this Letter, we want to prove another failure, the
violation of remaining Lorentz symmetry in TOPT.

Space-time noncommutaity, meaning that time

does not commute with space, splits up into two cases,

2. Theviolation in a scattering process

To demonstrate the violation of remaining Lorentz
invariance, we calculate a scattering amplitude in two
different frames related by remaining Lorentz trans-
formation, and show that the results do not coincide.

We choose a two by two scattering process in non-
commutativep® theory, i.e.,Lint = £¢ * ¢ x ¢, On
tree-level for incoming on-shell momenta, p» and
outgoing momenta agaipy, p2. The amplitude is di-
agrammatically given by the graphshig. 1, and ac-
cording to TOPT (se¢6] for details) corresponds to
the analytic expressions

lM - ZMS +lMu + iM—[y

1 A

. 2
lMs =8 ]
Eﬂ 2E,, q2 — MEq, —i€)
2\ 2
X V(pl» P2, _qs) |q3=p1+[72’
1 A

iM, =g2 Z

5 2B q7 — MEq, —ie€)

2
X V(Pl’ p2, _‘13) qu=p1—p2’
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Fig. 1. A scattering process i theory:s-, u- andzs-channel.
1 2Eq P — M(Ey, —i€) ) —
qu = ()"Ezp’ 07 O’ 2]9)7 E2p = m2+(2p)2’
x V(p1. p2 _qx)2| (6)
e a=o g:=p1—p1=(0,0,0,0),
where ¢/ = (m,0,0,0). (11)
Ey= \/mz +92, We find the configuration in frame 2 by applying the
g* = (AE,. ). transformatior(9):
V(p1, p2, p3) = é Z e 1 (Px).Px2) P2 (3) (7 p1=(E,coshB, E,sinhg, 0, p),

TeS3

the phase factoV is written with help of the abbrevi-
ation

P =) piADj. ®)

i<j

(p1...

Now, we will choose specifip1, p2 and 6#¥ of
type (5) in frame 1, calculaté M =i M, + iM, +
i M, there and compare o\’ which we compute in
frame 2 being related to frame 1 by the transformation

coshd sinhg 0 O
_ | sinhg coshg 0 O
G= 0 0 1 ol € 01, 1) x SO2).
0 0 0

©)

The following configuration is chosen in frame 1:

Ep,=\/m?+ p?,

pl - (Epvov 07 p)v
P2 = (Epvov 07 _p)v

0 10
-1 0 0 O

wy _

=%\ 5 o o ol (10)
0 0 0O

such that the internal momenta are

qS - p1+ p2 - (2Epv 07 Ov O)v
q; = (4m,0.0,0),

p5=(E,coshg, E,sinhg, 0, —p),
0 1 0

-1 0 0 O

0 0 0 0}
0 0 0O

implying the internal momenta

o' =gHv =, (12)

q. = py+ ph= (2E, coshB, 2E, sinhg, 0, 0),
()" = (\Ey. 2E,sinhB, 0,0),

Eg =./m?+ 4E2sint? g,

4, =1~ p2=1(0,0,0,2p),
(g,)* = (AE2,.0.0,2p),
q;=py—p1=1(0,0,0,0),
(g)* = (m,0,0,0). (13)

In frame 1, we note that the phase factors relevant for
iMg,iM, andi M, do not involved*", such that the
result is the same as in the commutative case:

1
iMy=g>— 14
“TE 1t pZ—m? (14)
1
iM, = 2—, 15
“TE o1 paZ—m? (15)
1
m
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However, in frame 2 the phase factors do invahé,

we may expand the resulting amplitudes to second or-

der in6, and arrive after some calculation (8¢ for

details) at
1
iMy =g
$TE it p22—m?
2 m? + 4E2 sink?
2 2g2p2™ FAESTD e g
3 P 3m2+ 4p?
+0(62). 17
1
iM,=g————
“=E (o1 pp2—m?
2 :
+ :—ggzefEf, sink? g + 0(6?), (18)
1 2 :
iM, = _gZW + :—ggzefEf, sinf? g +0(07).  (19)

The difference between the amplitudes in the two dif-
ferent frames can easily be read off, further manipula-
tion yields
iM—iM

_ 2 22,2
_Sgep

+ 0(93) <0
for p, 6., B # 0 andg sufficiently small

(mz +4E2sini?

— 2] sink?
3m2 + 4p2 )SI p

(20)

The last inequality is easily verified if we notice

mz+4E12, sint? B is less
3m2+4p?

or equal to%. We have thus shown that the scattering

amplitude differs in two frenes which are related by a

remaining symmetry transformation.

that for small enougls the term

3. Noncovariant transformation of the phase
factors

The origin of the above demonstrated violation of
remaining symmetry in TOPT lies in the noncovariant
transformation of the phase factors in TOPT.

Let p; be the externalg; the internal momenta,

the phase factors then depend gnand q?j, where
}; = £1. More precisely, these phase factors are func-

tions of the complex numbers; A p;, pi A q?j and
qf" A qj.". Under a transformation that leav@$” un-
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changed and takgg — p;,q; — q} we have

Pi APj = Pi AP =piADpj,

J

L .
N N

Aj Aj
#0iAlay’) = pinagg,
Ai Aj . .
;" ngj = @DM A gD
Ai Aj Ai Aj
#(a") A a)') =4 nay'. (21)

where the inequalities in the last two lines arise be-
cause the internal momenga are in generahot on-
shell and thereforeg))*i (ql-}”i)/. This means that
the noncommutative phase factor is not left invariant
by the transformation and can lead, as demonstrated
above, to different amplitudes.

4. Conclusions

Although TOPT solves the unitarity problem in
scalar space—time noncommutative theories, it poses
further problems. At first, internal symmetries are al-
tered, as it has been shown that Ward identities in
gauge theories are not longer vaJifj. In this Letter
we have addressed another problem, the violation of
remaining Lorentz symmetry. This result may suggest
to modify time-ordering in a way which explicitly pre-
serves remaining Lorentz symmetry. Such work has
been carried out recent[{], internal symmetries are
also investigated in the new approach.
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