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Abstract

We study remaining Lorentz symmetry, i.e., Lorentz transformations which leave the noncommutativity parameterθµν invari-
ant, within the approach of time-ordered perturbation theory (TOPT) to space–time noncommutative theories. Their
is shown in a simple scattering process. We argue that this results from the noncovariant transformation properties of
factors appearing in TOPT.
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1. Introduction

Noncommutative quantum field theory (NCQF
has recently received renewed attention (see[1] for a
review). This interest is triggered by its appearanc
the context of string theory[2], and by the observa
tion that Heisenberg’s uncertainty principle along w
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general relativity suggests the introduction of nonco
mutative space–time[3].

Coordinates are there considered as noncommu
Hermitian operatorŝxµ, which satisfy the commuta
tion relation

(1)
[
x̂µ, x̂ν

] = iθµν.

We will assume the antisymmetric matrixθµν to be
constant. The algebra of these noncommuting c
dinate operators can be realized on functions on
ordinary Minkowski space by introducing the Moy
.
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(2)(f � g)(x) = e
i
2θµν∂

ξ
µ∂

η
ν f (x + ξ)g(x + η)

∣∣
ξ=η=0.

To obtain a NCQFT from a commutative QFT, one
places the ordinary product of field operators by
star product in the action. Due to the trace property
the star product, meaning that

(3)
∫

dx (f1 � · · · � fn)(x)

is invariant under cyclic permutations, the free the
is not affected and noncommutativity only appears
the interaction part. As an example, the interaction in
noncommutativeϕ3

� -theory reads

(4)Sint = g

3!
∫

dx (ϕ � ϕ � ϕ)(x).

A first suggestion for perturbation theory has be
made in[4], where the Feynman rules for the ord
nary QFT are only modified by the appearance
momentum-dependent phase factors at the vert
These are of the forme−ip∧q , with p∧q = 1

2pµθµνqν .
Problems arise due to the nonlocality of the star pr
uct, which involves derivatives to arbitrary high o
ders. The S-matrix is no longer unitary in the case
space–time noncommutativity, i.e.,θ0i �= 0, as the cut-
ting rules are violated[5].

To cure this problem, a different perturbative a
proach, TOPT, has been suggested for scalar t
ries in [6]. It mainly builds on the observation th
for space–time noncommutativity time-ordering and
star product of operators are not interchangeable, t
order matters. Defining TOPT by carrying out tim
orderingafter taking star products, a manifestly un
tary theory is obtained. The Feynman rules are c
siderably more complicated, ordinary propagators
no longer found but split up into two contribution
Another characteristic is the form of the phase facto
they depend on the internal momentaq only through
the on-shell quantitiesqλ = (λEq,q), λ = ±1.

However, further problems arise. In[7] it has been
shown that Ward identities in NCQED are violated
TOPT is applied, which could be traced back to alte
current conservation laws on the quantized level[8].
In this Letter, we want to prove another failure, t
violation of remaining Lorentz symmetry in TOPT.

Space–time noncommutativity, meaning that time
does not commute with space, splits up into two ca
.

the so-called time-like and light-like one (see, e.g.,
discussion in[9]). Here we consider the time-like on
In the standard form for this caseθµν reads

(5)θµν =



0 θe 0 0
−θe 0 0 0

0 0 0 θm

0 0 −θm 0




which remains invariant under transformations ou
SO(1,1) × SO(2) ⊂ L↑

+. Therefore,SO(1,1) × SO(2)

is expected to be a remaining symmetry group. Ho
ever, we will show in the following that this symmet
is not respected by TOPT.

Section2 proves this statement by calculating
tree-level scattering amplitude in scalar noncomm
tative ϕ3

� -theory in two different frames, being re
lated two each other by a transformation out of
above symmetry group. The results will differ fro
each other. We will argue in Section3 that this fail-
ure results from the noncovariant transformations
the phase factors.

2. The violation in a scattering process

To demonstrate the violation of remaining Loren
invariance, we calculate a scattering amplitude in
different frames related bya remaining Lorentz trans
formation, and show that the results do not coincid

We choose a two by two scattering process in n
commutativeϕ3 theory, i.e.,Lint = g

3!ϕ � ϕ � ϕ, on
tree-level for incoming on-shell momentap1, p2 and
outgoing momenta againp1, p2. The amplitude is di-
agrammatically given by the graphs inFig. 1, and ac-
cording to TOPT (see[6] for details) corresponds t
the analytic expressions

iM= iMs + iMu + iMt ,

iMs = g2
∑

λ=±1

1

2Eqs

λ

q0
s − λ(Eqs − iε)

× V
(
p1,p2,−qλ

s

)2∣∣
qs=p1+p2

,

iMu = g2
∑

λ=±1

1

2Equ

λ

q0
u − λ(Equ − iε)

× V
(
p1,p2,−qλ

u

)2∣∣
qu=p1−p2

,
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Fig. 1. A scattering process inϕ3 theory:s-, u- andt-channel.
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(6)

iMt = g2
∑

λ=±1

1

2Eqt

λ

q0
t − λ(Eqt − iε)

× V
(
p1,p2,−qλ

t

)2∣∣
qt=0,

where

Eq =
√

m2 + q2,

qλ = (λEq,q),

(7)V (p1,p2,p3) = 1

6

∑
πεS3

e−i(pπ(1),pπ(2),pπ(3)),

the phase factorV is written with help of the abbrevi
ation

(8)(p1, . . . , pn) =
∑
i<j

pi ∧ pj .

Now, we will choose specificp1,p2 and θµν of
type (5) in frame 1, calculateiM = iMs + iMu +
iMt there and compare toiM′ which we compute in
frame 2 being related to frame 1 by the transformat

(9)

G =



coshβ sinhβ 0 0
sinhβ coshβ 0 0

0 0 1 0
0 0 0 1


 ∈ SO(1,1) × SO(2).

The following configuration is chosen in frame 1

p1 = (Ep,0,0,p), Ep =
√

m2 + p2,

p2 = (Ep,0,0,−p),

(10)θµν = θe




0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0


 ,

such that the internal momenta are

qs = p1 + p2 = (2Ep,0,0,0),

qλ
s = (λm,0,0,0),
qu = p1 − p2 = (0,0,0,2p),

qλ
u = (λE2p,0,0,2p), E2p =

√
m2 + (2p)2,

qt = p1 − p1 = (0,0,0,0),

(11)qλ
t = (λm,0,0,0).

We find the configuration in frame 2 by applying t
transformation(9):

p′
1 = (Ep coshβ,Ep sinhβ,0,p),

p′
2 = (Ep coshβ,Ep sinhβ,0,−p),

(12)θ ′µν = θµν = θe




0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0


 ,

implying the internal momenta

q ′
s = p′

1 + p′
2 = (2Ep coshβ,2Ep sinhβ,0,0),

(q ′
s)

λ = (λEq ′
s
,2Ep sinhβ,0,0),

Eq ′
s
=

√
m2 + 4E2

p sinh2 β,

q ′
u = p′

1 − p′
2 = (0,0,0,2p),

(q ′
u)

λ = (λE2p,0,0,2p),

q ′
t = p′

1 − p′
1 = (0,0,0,0),

(13)(q ′
t )

λ = (λm,0,0,0).

In frame 1, we note that the phase factors relevan
iMs, iMu andiMt do not involveθµν , such that the
result is the same as in the commutative case:

(14)iMu = g2 1

(p1 + p2)2 − m2 ,

(15)iMu = g2 1

(p1 − p2)2 − m2 ,

(16)iMt = −g2 1

m2
.
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However, in frame 2 the phase factors do involveθµν ,
we may expand the resulting amplitudes to second
der inθe and arrive after some calculation (see[8] for
details) at

(17)

iM′
s = g2 1

(p1 + p2)2 − m2

− 2

3
g2θ2

e E2
p

m2 + 4E2
p sinh2 β

3m2 + 4p2 sinh2 β

+ o
(
θ2
e

)
,

(18)

iM′
u = g2 1

(p1 − p2)2 − m2

+ 2

3
g2θ2

e E2
p sinh2 β + o

(
θ2
e

)
,

(19)iM′
t = −g2 1

m2 + 2

3
g2θ2

e E2
p sinh2 β + o

(
θ2
e

)
.

The difference between the amplitudes in the two
ferent frames can easily be read off, further manipu
tion yields

iM− iM′

= 2

3
g2θ2

e E2
p

(
m2 + 4E2

p sinh2 β

3m2 + 4p2
− 2

)
sinh2 β

+ o
(
θ2
e

)
< 0

(20)for p, θe,β �= 0 andβ sufficiently small.

The last inequality is easily verified if we notic

that for small enoughβ the term
m2+4E2

p sinh2 β

3m2+4p2 is less

or equal to1
3. We have thus shown that the scatter

amplitude differs in two frames which are related by
remaining symmetry transformation.

3. Noncovariant transformation of the phase
factors

The origin of the above demonstrated violation
remaining symmetry in TOPT lies in the noncovaria
transformation of the phase factors in TOPT.

Let pi be the external,qj the internal momenta

the phase factors then depend onpi andq
λj

j , where
λj = ±1. More precisely, these phase factors are fu

tions of the complex numberspi ∧ pj ,pi ∧ q
λj

j and

q
λi

i ∧ q
λj

j . Under a transformation that leavesθµν un-
changed and takespi → p′
i , qj → q ′

j we have

pi ∧ pj → p′
i ∧ p′

j = pi ∧ pj ,

pi ∧ q
λj

j → p′
i ∧ (q ′

j )
λj

�= p′
i ∧ (

q
λj

j

)′ = pi ∧ q
λj

j ,

(21)

q
λi

i ∧ q
λj

j → (q ′
i )

λi ∧ (q ′
j )

λj

�= (
q

λi

i

)′ ∧ (
q

λj

j

)′ = q
λi

i ∧ q
λj

j ,

where the inequalities in the last two lines arise
cause the internal momentaqi are in generalnot on-
shell and therefore(q ′

i )
λi �= (q

λi

i )′. This means tha
the noncommutative phase factor is not left invari
by the transformation and can lead, as demonstr
above, to different amplitudes.

4. Conclusions

Although TOPT solves the unitarity problem
scalar space–time noncommutative theories, it po
further problems. At first, internal symmetries are
tered, as it has been shown that Ward identities
gauge theories are not longer valid[7]. In this Letter
we have addressed another problem, the violatio
remaining Lorentz symmetry. This result may sugg
to modify time-ordering in a way which explicitly pre
serves remaining Lorentz symmetry. Such work
been carried out recently[9], internal symmetries ar
also investigated in the new approach.
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