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Abstract. The Battle of the Sexes describes asymmetric conflicts in mating behavior of males and females.
Males can be philanderer or faithful, while females are either fast or coy, leading to a cyclic dynamics.
The adjusted replicator equation predicts stable coexistence of all four strategies. In this situation, we
consider the effects of fluctuations stemming from a finite population size. We show that they unavoidably
lead to extinction of two strategies in the population. However, the typical time until extinction occurs
strongly prolongs with increasing system size. In the emerging time window, a quasi-stationary probability
distribution forms that is anomalously flat in the vicinity of the coexistence state. This behavior originates
in a vanishing linear deterministic drift near the fixed point. We provide numerical data as well as an
analytical approach to the mean extinction time and the quasi-stationary probability distribution.

PACS. 87.23.-n Ecology and evolution – 05.40.-a Nonlinear dynamics and chaos – 02.50.Ey Stochastic
processes – 05.10.Gg Stochastic analysis methods (Fokker-Planck, Langevin, etc.)

1 Introduction

Evolutionary game theory [1–3] describes the coevolution
of different interacting species. The latter act according
to a certain strategy, and the success of each strategy de-
pends on the behavior of the other species. In this way,
the fitness of each individual is frequency dependent; it
changes upon altering the abundances of the different
species in the total population. The classical formulation
of such evolutionary games uses ordinary differential equa-
tions (replicator equations) [1,2]. However, in real popu-
lations fluctuations occur, stemming, e.g., from the dis-
creteness of individuals, the random character of the inter-
actions or spatial degrees of freedom. Incorporating such
stochastic effects constitutes an important issue that cur-
rently receives much attention [4–10]. In the simplest sce-
nario, fluctuations stem only from finite population sizes,
while spatial structure or other correlations among indi-
viduals may be neglected. This situation arises when pop-
ulations are well-mixed, i.e. individuals interact randomly
with each other.

Here, we consider the influence of finite-size fluctua-
tions on the dynamics of the bimatrix game Battle of the
Sexes. The latter was first introduced by Dawkin [11], and
serves as a model for describing different mating behav-
iors of males and females1. Both males and females spread

a e-mail: jonas.cremer@physik.uni-muenchen.de
1 In economics, a symmetric two-player coordination game

is also commonly referred to as Battle of the Sexes. However,
both in motivation as in characteristic behavior, the latter is

their genes if they get as many offspring as possible. How-
ever, an offspring causes some cost, and so every individual
tries to shift this cost to the other mating partner, result-
ing in non-trivial competitions. As an example, this dy-
namics has been applied to insect populations [13]. More
generally, the Battle of the Sexes serves as an example
of an intriguing class of asymmetric games, often also de-
scribed by the game “matching pennies” [2,14]. This class
is characterized by lack of pure Nash-equilibria, accompa-
nied by cyclic behavior and interesting stability properties
of an emerging internal fixed point.

In the simplest formulation of the Battle of the Sexes,
both males (♂) and females (♀) can choose between two
alternative strategies. Females either belong to the fast fe-
males, strategy ♀A, or to the coy females, strategy ♀B. The
latter insist on a long courtship (implying a certain cost
for both partners, as they wait for mating), opposed to
fast females, while both care for their offspring (which also
bears some cost). The male subpopulation is constituted
of philanderers, strategy ♂A, or faithful males, strategy♂B. Philanderers are not prepared to engage in a long
courtship, and do not care for their offspring. In contrast,
faithful males do, if necessary, engage in courtship as well
as in raising the offspring. Note that different strategies
apply to the two subpopulations, the game is asymmet-
ric. The benefits and costs of the different strategies de-
pend on the mating partner, and are usually encoded in a

different from the Battle of the Sexes considered in this arti-
cle [12].
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payoff matrix. For the Battle of the Sexes, Dawkin [11]
has proposed the following payoffs:

fast: ♀A coy: ♀B

philanderer: ♂A (15,–5) (0,5)
faithful: ♂B (5,0) (2,2)

hereby, the first term within the brackets encodes the pay-
off of males, and the second the one of females. For exam-
ple, if a philanderer meets a fast female, the philanderer
gains the high payoff 15 (he has offspring without caring
for it), while the fast female gets payoff −5 (although hav-
ing spread her genes, she must raise the offspring herself).

The qualitative behavior of the dynamics can be seen
as follows. Consider a situation with almost only fast fe-
males and philanderers, the few coy females will then take
over the female subpopulation since fast females have a
disadvantage against philanderers (they have to raise the
offspring on their own as the males leave after mating).
However, if there are many coy females, faithful males
are better off since fast females are rare and philanderers
have problems finding mating partners. If there are again
many faithful males, fast females have an advantage com-
pared to coy ones since the risk of getting a philanderer
is low and they safe the cost of waiting for mating. Phi-
landerers, facing a high fraction of fast females, are now
again in a favorable position, and edge out faithful males.
Hence, the whole dynamics is cyclic, similar to the non-
hierarchical competition encountered in the rock-paper-
scissors game [1,2,8,10,15].

The ecologically most relevant question in this compe-
tition is whether all strategies can coexist (probably with
oscillating frequencies) in a stable manner, such that the
system is diverse, or whether some strategies go extinct,
and only one pair of strategies survives. We show in the
following that the answer is drastically influenced by the
finite sizes of the populations. If populations are large, the
dynamics is close to the deterministic one. In this limit,
it has been shown in [1,14] that all strategies coexist. The
replicator equation predicts neutrally stable oscillations,
and the adjusted replicator equation weakly damped ones.
However, it has already been outlined in [6] that finite-size
fluctuations may invalidate this result.

Here, we present a thorough analysis of such stochas-
tic effects in the Battle of the Sexes. Within a proper de-
scription of the system in terms of a Fokker-Planck equa-
tion, we show that extinction indeed occurs eventually,
although the mean waiting time can be extremely long.
Indeed, the latter increases strongly with growing popula-
tion size. An intermediate probability distribution corre-
sponding to coexistence of all strategies forms, which we
compute analytically as well as by stochastic simulations.
We find anomalous behavior; the distribution is flat over
a wide range of states (corresponding to coexistence), and
then strongly decays.

This paper is organized as follows: in the next sec-
tion, we introduce the stochastic version of the Battle of
the Sexes and present the master equation of the discrete
stochastic process. In Section 3 we consider the determin-
istic limit of the stochastic model, and recover adjusted

replicator equations. We analyze the deterministic dynam-
ics and the stability of an interior coexistence fixed point,
which gives us hints on the behavior of the stochastic
model discussed in Section 4. There, finite-size fluctua-
tions are included into the description. We present the
continuum approximation of the stochastic process by a
Fokker-Planck equation and show that a quasi-stationary
distribution forms. In Section 5 we consider the mean ex-
tinction time T , being the mean time until two strategies
go extinct. In the last Section we summarize our findings
and present a brief conclusion.

2 Stochastic model

In this Section we set up a simple stochastic model for
describing the cyclic dynamics of the Battle of the Sexes
in a population of finite size. As we consider a well-mixed
situation, the system’s state is entirely determined by the
number of individuals using the four different strategies.
We denote by N♂

A and N♂
B the number of males using

strategy ♂A resp. ♂B; analogously, N
♀
A and N

♀
B encode

the number of females of strategy ♂A resp. ♂B.
For the stochastic dynamics, we consider a Moran

process [16,17] (equivalent to urn models [8,18]). In this
framework, the number of males and females are chosen
to be equal and remain constant in time, N♀ = N♂ ≡ N .
Then we may, for example, describe the current state
of the system by the frequencies x of philanderers, x =
N♂

A /N , and the abundance y of fast females, y = N
♀
A/N .

The frequencies of faithful males and coy females follow as
1−x and 1−y. We thus encounter a two-dimensional state
space. The dynamics is defined by selection and reproduc-
tion events: At each update-step, one individual is selected
for reproduction, proportional to its fitness (which will be
introduced below), while another (randomly chosen) indi-
vidual of the same subpopulation is replaced.

Introducing the probability P (x, t) that the system is
in state x = (x, y) at time t, we can write down a master
equation for the stochastic (Markov) process [19,20],

∂tP (x, t) =
∑

x′
[Γx′→xP (x′, t) − Γx→x′P (x, t)] . (1)

Hereby, Γx′→x denotes the transition rate from state x
to a new state x′. In our case, the states can only differ
by 1/N , as only a single individual is replaced at each
step. For example, a philanderer (♂A) can be replaced
by a faithful male (♂B); we denote the corresponding
rate by Γ♂

A→B (x) if the system’s state was initially x.
Analogously, rates Γ♂

B→A (x), Γ
♀
A→B (x) and Γ

♀
B→A (x)

appear. These transition rates involve the individuals’ fit-
ness, which we introduce in the following.

Denote by f♂
A the fitness of philanderers, and by f♂

B ,
f
♀
A , f

♀
B the ones of faithful males, fast females, and coy

ones, respectively. They follow from a payoff matrix as
the one presented in the Introduction (to be described
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below). For the rates, as an example, consider the proba-
bility Γ♂

A→B (x) for replacing a philanderer by a faithful
male. It is given by the fitness f♂

B of the latter (normal-
ized by the average fitness denoted as φ♂), multiplied by
the probability x(1 − x) of selecting a faithful male for
reproduction and a philanderer for replacement. Thus, we

encounter Γ♂
A→B (x) = f♂B

φ♂x(1−x). Analogously, the other

transition rates are found, and altogether, we obtain

Γ♂
B→A =

f♂
A

φ♂ x(1 − x) , Γ♂
A→B =

f♂
B

φ♂ x(1 − x) ,

Γ
♀
B→A =

f
♀
A

φ♀ y(1 − y) , Γ
♀
A→B =

f
♀
B

φ♀ y(1 − y). (2)

Hereby, φ♀ denotes the average fitness of females, and is
given by φ♀ = f

♀
Ay + f

♀
B(1 − y), while the average fit-

ness of males reads φ♂ = f♂
A x + f♂

B (1 − x). The rate
for a transition within a given subpopulation depends on
the frequencies of strategies there, as well as on the abun-
dances of the different strategies of the other subpopula-
tion, entering via the fitness functions, as we show in the
following.

As described in the introduction, fitness is conveniently
encoded in a payoff matrix. Here, we consider the most
symmetric formulation of the Battle of the Sexes, where
the payoffs are given by

fast: ♀A coy: ♀B

philanderer: ♂A (1,–1) (–1,1)
faithful: ♂B (–1,1) (1,–1)

For example, if a philanderer meets a fast female, the phi-
landerer gains payoff 1, while the fast female gets payoff
−1.

For the fitness of one individual, we consider a back-
ground fitness of 1 − ω, where the (small) parameter ω
is referred to as selection strength. The fitness stemming
from the individuals’ interactions, given by the payoff ma-
trix, is multiplied by ω, and added. For vanishing selection
strength, ω = 0, the game is purely neutral, there is no fre-
quency dependent fitness at all. Increasing ω, the interac-
tions between the individuals and therefore the frequency
dependent dynamics becomes more and more important.
Note that, due to the formulation of the Moran process,
the fitnesses of the individuals must be nonnegative, such
that the selection strength ω may not be too large. For
specificity, in our stochastic simulations presented below,
we used ω = 0.5.

In this formulation, the fitness of a philanderer is
f♂

A = 1−ω+ω [y − (1 − y)], as he encounters a fast female
at probability y and a coy one with a probability 1−y. Sim-
ilarly, faithful males gain a payoff f♂

B = 1−ω+ω (1 − 2y),
fast females earn f

♀
A = 1 − ω + ω (1 − 2x), and coy ones

f
♀
B = 1 − ω + ω (2x − 1).

3 Deterministic dynamics

To gain a first intuitive understanding of the system’s be-
havior, we start our discussion with the deterministic dy-
namics, which is ensued in the limit of infinite population
size, N → ∞. In this asymptotic limit, the state space be-
comes continuous: the frequencies of philanderers, x, and
of fast females, y, can take any value in the interval [0, 1].
The deterministic dynamics describes the time-evolution
of these frequencies in terms of ordinary differential equa-
tions (ODE). The latter are obtained from the underly-
ing stochastic process by consideration of the frequencies’
mean values. In addition, a mean-field assumption (which
is justified for well-mixed populations) factorizes higher
moments of the probability distribution, yielding ODE
for the first moments. For the Moran process, which we
consider, they are given by the adjusted replicator equa-
tions [6] for the (mean) frequencies x and y, we sketch
its derivation in the following. According to the Moran
process introduced above, the time evolution of the mean
fraction of philanderers is given by

x(t + δt) = x(t) +
f♂

A

φ♂ x(1 − x)δt − f♂
B

φ♂ x(1 − x)δt. (3)

Here, we have chosen the time-scale such that N update
steps (one generation) occur in one time-unit. Together
with an analogous equation for the time evolution of the
females’ frequencies, we obtain

dx

dt
=

f♂
A − φ♂

φ♂ x = 2ω̃
x(1 − x)(2y − 1)

1 + ω̃ (2y − 1) (2x − 1)
,

dy

dt
=

f
♀
A − φ♀

φ♀ y = −2ω̃
y(1 − y)(2x − 1)

1 − ω̃ (2x − 1) (2y − 1)
, (4)

where we introduced ω̃ = ω
1−ω to simplify the expressions.

We recover the well known adjusted replicator equations of
a bimatrix game [2,21]. The success of a strategy depends
on its fitness compared to the average one. For example,
the sign of f♂

A − φ♂ determines if the fraction of philan-
derers in the male subpopulation grows or decreases.

Let us analyze the deterministic system described by
equations (4) in more detail. There are four trivial fixed
points, namely the four corners of the phase space. They
correspond to the survival of only one pair of strategies,
and are given by (x∗

1, y
∗
1) = (0, 0) (only faithful males and

coy females), (x∗
2, y

∗
2) = (0, 1) (only faithful males and

fast females), (x∗
3, y

∗
3) = (1, 0)(only philanderers and coy

females), and (x∗
4, y

∗
4) = (1, 1) (only philanderers and fast

females). All these fixed points are saddle points. In ad-
dition, one fixed point resides in the interior of the phase
space, at a position x∗ = y∗ = 1/2. At this coexistence
fixed point, all strategies are present at equal frequencies.

The coexistence fixed point is globally stable, which
can be shown using the following Lyapunov func-
tion [1,14]:

H = −x · (1 − x) · y · (1 − y) (5)

= −
(

1
4
− x̃2

) (
1
4
− ỹ2

)
.
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Hereby, in the second line, we have introduced new coor-
dinates x̃, ỹ that originate in the coexistence fixed point,

x̃ = x − 1
2

, ỹ = y − 1
2
.

In these coordinates, the temporal derivative of H is given
by

dH

dt
= − ω̃2x̃2ỹ22

(
1 − 4x̃2

) (
1 − 4ỹ2

)

1 − (4ω̃x̃ỹ)2
, (6)

which is negative on the whole phase space (except for
the boundaries and the coexistence fixed point, where it
vanishes). As H has its minimum at the coexistence fixed
point, the latter is globally stable. In particular, it is at-
tractive for every state that is not located at the bound-
aries.

Performing a Taylor expansion of the equations (4)
around the fixed point yields

dx̃

dt
= ω̃ỹ − 4ω̃x̃2ỹ − 4ω̃2x̃ỹ2 + O (

(x̃, ỹ)4
)

,

dỹ

dt
= −ω̃x̃ − 4ω̃2x̃2ỹ + 4ω̃x̃ỹ2 + O (

(x̃, ỹ)4
)
. (7)

The dynamics resulting from these equations becomes
most evident upon introducing polar coordinates (r, φ)
given by

x̃ = r cosφ, and ỹ = r sin φ. (8)

r denotes the distance to the coexistence fixed point.
Then, the replicator dynamics is given by

dr

dt
= −ω̃r3 [ω̃(1 − cos 4φ) + sin 4φ] ,

dφ

dt
= −ω̃ + ω̃r2 [(1 − cos 4φ) − ω̃ sin 4φ]). (9)

We observe the linear order, given by dr
dt = 0 and dφ

dt = −ω̃,
to predict neutrally stable cycling around the fixed point
at frequency ω̃. Therefore, this behavior occurs asymptot-
ically when approaching the coexistence fixed point. At
further distance, higher orders matter. As can be seen,
the third order terms in ∂tr yield a drift towards the fixed
point2 which only vanishes at the fixed point. The latter is
thus stable, in agreement with the previous considerations
based on the Lyapunov function.

To summarize, although the coexistence fixed point
is globally stable, the linear drift in its vicinity vanishes.
Therefore, close to the fixed point, only cyclic motion
around it remains. To illustrate this behavior, in Figure 1,
we show a trajectory (black solid line) emerging as solution
of the adjusted replicator equation when starting near the
boundary of the phase space. Although the drift towards
the interior fixed point is strong close to the boundary,
it is seen to vanish when the fixed point is approached.

2 The average of the angle-dependent terms in ∂tr along
one cycle around the fixed point vanishes, the remaining term
yields a drift into the coexistence fixed point.
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Fig. 1. Phase space and dynamics of the Battle of the Sexes.
The deterministic dynamics exhibits a coexistence fixed point
at x∗ = y∗ = 1

2
. The black solid line shows a deterministic tra-

jectory. Starting at a fraction of philanders of x = 0.01 and a
fraction of fast females given by y = 0.5, the system oscillates
according to the cyclic dynamics. The coexistence fixed point
is approached but the drift towards it is getting very weak in
its vicinity. Indeed, the linear order of the drift vanishes at the
fixed point, and only third order terms render it stable. The
time needed for the deterministic trajectory to approach the
fixed point is extremely long, and we have only followed the
evolution over a shorter time. To prevent the wrong impres-
sion of a limit cycle, we have therefore filled the region close
to the reactive fixed point with a black circle, to indicate that
the deterministic trajectory eventually reaches the fixed point.
A realization of the stochastic process (starting at the same
initial state; the system size is N = 500) is shown in red. As
can be seen, at the beginning, the realization follows the de-
terministic trajectory. The drift towards the coexistence fixed
point dominates the behavior, fluctuations are unimportant.
This changes at closer distance to the coexistence fixed point,
where the deterministic drift is lower and fluctuations have a
stronger impact.

There, the cyclic behavior dominates. As an example for
the behavior of the finite system (discussed in the next
Section), we also show a stochastic trajectory (red line) in
Figure 1. Starting in the vicinity of the boundary, it follows
closely the deterministic solution. The deterministic drift
is strong, and fluctuations have only a minor influence.
This changes when the fixed point is approached. There,
due to the vanishing deterministic drift towards the fixed
point, fluctuations dominate. In the next Section, we show
how this induces intriguing behavior.

4 Stochastic description

Stochasticity has an important impact in this model due
to the existence of absorbing boundaries. Namely, if one
strategy has gone extinct (i.e. the system has reached
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Fig. 2. The approach of a quasi-stationary distribution.
Stochastic simulations (for a system size N = 100) show that,
starting at an initial delta peak at the coexistence fixed point,
a quasi-stationary distribution is reached, at a time around
t = 50. Then, it remains unchanged for a long time (we have
followed it up to a time t = 100). During this time, extinction
events have occurred only very rarely (until t = 100, less then
0.1% of the realizations have reached the boundaries). We ob-
serve the quasi-stationary distribution to be almost flat in the
vicinity of the reactive fixed point.

the boundary of the phase space), this strategy can no
longer give rise to an offspring, and therefore cannot re-
cover again. Thus, the boundaries are absorbing, and once
the system has reached them, the cyclic dynamics drives
it into a state where only one pair of strategies is present
(the corners of the phase space). The existence of fluctu-
ations in the system ensures that (maybe after very long
waiting time) the absorbing boundary is reached. Thus,
extinction unavoidably occurs. However, due to the de-
terministic drift towards the coexistence fixed point, the
mean waiting time T is expected to be long for large sys-
tems. Indeed, in the next Section, we will show that T
strongly prolongs with increasing population size.

Consider a situation where the system is initially at
the coexistence fixed point (the probability distribution
is, initially, a delta peak). The distribution will broaden
in time, counteracted by deterministic third-order terms,
cf. Figure 2. When this deterministic drift balances the
fluctuations, an intermediate (quasi-stationary) probabil-
ity distribution forms (Fig. 3). As the initial spreading is
induced by fluctuations, the intermediate distribution is
expected to form around a time proportional to the sys-
tem size N [8]. (In this section we show that it obeys
non-Gaussian behavior, due to the vanishing linear drift.)
At much later times, this distribution decays as, due to
fluctuations, the probability increases that the system has
eventually reached the absorbing boundaries. We find the
typical extinction time T to diverge exponentially in the
system size, T ∼ exp(N). Similar exponential divergence
of the extinction time has recently been identified in sym-
metric two-player games with a stable coexistence fixed
point [22].

In this section we describe the quasi-stationary distri-
bution analytically; the mean extinction time is considered
in the next Section. To take the stochasticity of the Moran
process into account, we chose a continuous diffusion-like
description. Namely, we use a Fokker-Planck equation ob-
tained via a Kramers-Moyal expansion (which may be seen
as an expansion in the system size) of the master equa-
tion (1), see , e.g., reference [23]. The resulting Fokker-
Planck equation describes the time evolution of the prob-
ability P (x, t) that the system is in state x = (x, y) at
time t, and reads

∂tP (x, t) = −
∑

i

∂i [αi(x, t)P (x, t)]

+
1
2

∑

i,j

∂i∂j [βijP (x, t)] . (10)

The summation is over the phase space coordinates x and
y. The drift coefficients αi follow from the adjusted repli-
cator equations (4); αx = ∂tx and αy = ∂ty. The coef-
ficients of the diffusion matrix (βij) encode fluctuations
and are given by

βxx =
1
N

(
f♂

A

φ♂ x(1 − x) +
f♂

B

φ♂ (1 − x)x

)
,

βyy =
1
N

(
f
♀
A

φ♀ y(1 − y) +
f
♀
B

φ♀ (1 − y)y

)
,

βxy = βyx = 0. (11)

The diffusion matrix (βij) is diagonal, as can be under-
stood as follows: Each update process is only acting on
one subpopulation, such that fluctuations between the
subpopulations do not form. For each subpopulation, a
process leading to an increase or decrease of one strategy
increases the fluctuations, therefore, for example, βxx is
the sum of the probability for an increase of the philan-
derers and for an increase of the faithful males.

To proceed, we further employ van Kampens linear
noise approximation [20]. We assume a constant diffu-
sion matrix with the values at the coexistence fixed point,
βij(x) ≈ βij(x∗). In addition, as done above in the de-
terministic description, we approximate the drift term up
to third order around the coexistence fixed point and use
polar coordinates. The Fokker Planck equation turns into

∂tP (r, φ, t) = ω̃∂φP (r, φ, t) + 4ω̃2r2P (r, φ, t)

+ ω̃r3 [ω̃ (1 − cos 4φ) + sin 4φ] ∂rP (r, φ, t)
+ ω̃r3 [ω̃ sin 4φ − (1 − cos 4φ)] ∂φP (r, φ, t)

+
1

2N
�r P (r, φ, t), (12)

where �r denotes the Laplacian in polar coordinates.
As can be seen from Figure 1 as well as from equa-

tions (9), in the vicinity of the coexistence fixed point,
the system obeys a polar symmetry. Therefore, we solve
the Fokker-Planck equation within a radial approximation
around the fixed point by replacing every angle-dependent
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Fig. 3. The quasi-stationary distribution, for a system size
N = 100. It is concentrated in the middle of the phase space,
having almost flat behavior there. Towards the boundaries, it
rapidly decreases, until nearly vanishing. The probability dis-
tribution is symmetric under rotation of π/2, as follows also
from the symmetric formulation of the game (symmetric pay-
off matrix). Close to the fixed point, it asymptotically obeys a
polar symmetry. For large system size, the relevant part of the
quasi-stationary distribution is located close enough around
the fixed point. In this regime, the approximation by an angu-
lar independent Fokker-Planck equation is valid.

term by its mean value, for example 〈sin φ〉φ = 0. This is
justified as close to the fixed point, the system performs
many oscillations with only weak drift into the fixed point.
The drift may therefore be approximated by its mean
value on a given cycle. With P̃ (r) = r · P (r, t) it follows:

∂tP̃ (r, t) = ∂r

[(
ω̃2r3 − 1

2N

1
r

)
P̃ (r, t)

]
+

1
2N

∂2
r P̃ (r, t) ,

= −∂r

[
αrP̃ (r, t)

]
+

1
2
βr∂

2
r P̃ (r, t). (13)

We encounter a one-dimensional Fokker-Planck equation.
The dynamics takes place in an effective potential U =
1
4 ω̃2r4− 1

2N ln(r), with αr = −∂rU(r). Standard diffusion,
given by the constant fluctuation term βr = 1

N , occurs.
With the help of this approximation we can now calculate
the quasi stationary distribution defined by ∂tP (r, t) = 0.
For large enough systems, the distribution is centered
at the fixed point, see Figure 3, nearly vanishing at the
boundaries. We therefore neglect the absorbing bound-
aries of the phase space, and use P (∞, t) = 0 as boundary
condition. The radial quasi-stationary distribution then
reads

P (r) =
2d

π
3
2

exp
(−dr4

)
, (14)

with d = ω̃2N
2 . Hereby, r is the distance to the coexistence

fixed point.
We have compared this analytical finding to stochas-

tic simulations, see Figure 4. Both agree excellently and
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Fig. 4. Stochastic simulations of the Battle of the Sexes. Nu-
merical data for the radial quasi-stationary probability distri-
bution are shown. They confirm the analytical prediction of

an exp(−dr4)-distribution (solid lines) with d = ω̃2N
2

. With
increasing system size N , the distribution is more and more
centered around the fixed point. In the vicinity of the latter,
the distribution is nearly flat, but it falls rapidly to zero at a
larger distance.

thereby the approximation by an angle independent prob-
ability distribution is confirmed.

This anomalous probability distribution is a result of
the weak deterministic drift towards the boundaries. In-
deed, a linearly stable fixed point leads to a (standard)
Gaussian distribution, with a standard deviation that de-
creases as N−1/2 in the system size N , as in the Ornstein-
Uhlenbeck-process [19,20]. In our case, the linear drift at
the fixed point vanishes, consequently, the resulting proba-
bility distribution is almost flat there. At larger distance to
the fixed point, third order terms become important, and
cause a sudden decrease of the probability; a non-Gaussian
distribution forms. Its width, encoded by the parameter
d−1/4, still decreases with increasing system size N , al-
though weaker than in a Gaussian distribution, namely
only as N−1/4. This behavior universally arises when a
fixed point is neutrally stable to linear order, but stabi-
lized by third order terms, and therefore characterizes this
class of systems.

5 Extinction time

In the previous section, we have described the emergence
of an intermediate quasi-stationary probability distribu-
tion on time scales proportional to the system size. How-
ever, we have already pointed out that, on much longer
time scales, this distribution eventually decays, and only
one pair of strategies survives (in our model, due to the
symmetric formulation, all corners of the phase space may
be reached at equal probabilities). In this section, we ana-
lyze the time scale needed for extinction. In particular, we
show that it diverges exponentially in the system size N .

Consider the mean time T (x, y) it takes until the ab-
sorbing boundaries are reached if starting at a state (x, y)
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at time t = 0. For its calculation, we use again the con-
tinuous approximation of the stochastic process by the
Fokker-Planck equation (10) introduced above. Also, we
employ the angular symmetric approximation to obtain
the one-dimensional Fokker-Planck equation (13). In this
setting, calculating the extinction time is a first-passage
time problem in one dimension with an absorbing bound-
ary at a radius rexit. We are interested in the asymptotic
limit of a large system size, and for the scaling behavior
of T , the explicit value of rexit will turn out be unimpor-
tant. We solve the first-passage problem with the help of
the backward Kolmogorov equation [19,24]. Thereby, the
mean extinction time is given by the solution of the fol-
lowing equation

[
αr(r)∂r +

1
2
βr(r)∂2

r

]
T (r) = −1, (15)

with appropriate boundary conditions. The variable r now
denotes the starting point, at time t = 0. The general
solution of this problem for one reflecting (r = 0) and one
absorbing boundary (r = rexit) is given by

T = 2
∫ rexit

r

dy

Ψ(y)

∫ y

0

Ψ(z)
βr

dz. (16)

Hereby, Ψ(z) = exp
[∫ z

0
dz′ 2αr(z′)

βr

]
, and is computed as

Ψ(z) = z exp
(
−Nω̃2

2
z4

)
. (17)

We consider the mean extinction time when starting at the
coexistence fixed point, T = T (r = 0). Then, the integrals
in equation (16) are solved by a hypergeometric series:

T =
N
√

π

2
r2
exitF{1/2,1;3/2,3/2}

(
Nω̃2

2
r4
exit

)
. (18)

Hereby, the hypergeometric series is defined as

F{a1,a2;b1,b2} (z) =
∞∑

k=0

Γ (a1 + k)Γ (a2 + k)
Γ (a1)Γ (a2)

× Γ (b1)Γ (b2)
Γ (b1 + k)Γ (b2 + k)

zk

k!
. (19)

Equation (18) yields an analytical expression for the mean
extinction time. In the asymptotic limit of infinite sys-
tem size N , it turns out that T diverges exponentially,
T ∼ N−1/2 exp(N). Namely, an asymptotic expansion
of the hypergeometric series for large arguments yields
F{a1,a2;b1,b2} (z) ∼ za1+a2−b1−b2 exp(z), see, e.g., [25]. For
the dependence of the mean extinction time T on N , this
implies T ∼ N × Na1+a2−b1−b2 exp(N) = N−1/2 exp(N).

In Figure 5 the analytical prediction of the extinc-
tion time as well as stochastic simulations are shown.
Hereby, excellent agreement is found for rexit = 0.70.
This value lies in between the minimal possible exit ra-
dius, rmin

exit = 0.5, and the maximal possible one (the dis-
tance from the coexistence fixed point to one corner),
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Fig. 5. The mean extinction time T : stochastic simulations
(circles) show that T increases exponentially with increasing
system size N . This originates in finite-size fluctuations that,
with larger system size, become weaker and weaker compared
to the deterministic drift towards the coexistence fixed point.
The analytical approximation, given by equation (18), is shown
as a solid line and agrees very well with the numerical data.
We have chosen an exit radius of rexit = 0.70, and adjusted an
additional factor of 0.28, taking nonlinearities into account.

rmax
exit = 1/

√
2. In addition, we have adjusted a constant

factor of 0.28, taking nonlinearities into account3.

6 Conclusions

In this article, we have considered the influence of finite-
size fluctuations on the coexistence of different strategies
in the Battle of the Sexes. The deterministic dynamics, de-
scribed by adjusted replicator equations, predicts a coex-
istence fixed point which is stable (in contrast to the stan-
dard replicator dynamics considered in [14], which yields
neutrally stable oscillations). However, the linear part of
the deterministic drift towards the coexistence fixed point
vanishes, stability is only induced by third order terms. We
have shown how this behavior, in the presence of finite-
size fluctuations that compete with the deterministic drift,
induces a non-Gaussian probability distribution, propor-
tional to exp(−r4) around the fixed point. Namely, as the
drift vanishes in the vicinity of the coexistence fixed point,
fluctuations affect the system unopposed and induce a
flat distribution there. Further away from the fixed point,
third order terms of the deterministic drift dominate and
lead to a sudden decrease of the probability distribution.

We have found this probability distribution to be only
intermediate. Namely, due to the presence of absorbing
boundaries, extinction of two strategies eventually occurs.
We have computed the mean time for extinction, and
found that it increases exponentially in the system size

3 By assuming a constant fluctuation term and approximat-
ing the deterministic drift term up to third order we have ne-
glected higher nonlinearities. These higher order terms do not
change the characteristic behavior of the extinction time but
lead to an additional factor (in our case 0.28), a similar exam-
ple is considered in [26].
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N . Thus, for large systems, the mean extinction time is
extremely long, and the quasi-stationary probability dis-
tribution very long-lived. This behavior originates in the
1/N decay of the finite-size fluctuations, rendering the
deterministic drift dominant for large system sizes. On
time-scales below the mean extinction time, which may
be the ecologically relevant ones (see, e.g., the discussion
in [27,28]), coexistence is thus stable. Indeed, in refer-
ence [15] a definition of stability/instability of coexistence
in stochastic systems based on time-scales has been pro-
posed; within this classification, the stochastic Battle of
the Sexes analyzed in the present work belongs to the sta-
ble regime. We hope that, in such a more general context,
our work contributes to the understanding of ecological di-
versity in the interplay with fluctuations and time-scales.

Although we have, for specificity, considered a sym-
metric formulation of the Battle of the Sexes, on a quali-
tative level, our results generalize to less symmetric cases.
Indeed, as long as the payoff matrix belongs to the class
of the game “matching pennies”, its precise entries have
only minor influence. The deterministic (adjusted replica-
tor) equations obey a cyclic dynamics, with an internal
fixed point that is neutrally stable to first order, while
higher orders yield a drift towards it. In this situation,
finite-size fluctuations cause the behavior described above
– extinction on an exponentially diverging time-scale,
with an intermediate anomalous probability distribution.
Considering situations where individuals are spatially ar-
ranged [10,15,29] or interact with each other according to
network structures (see e.g. [9,10,30]), one may speculate
that the intriguing dynamics of this class of games may
lead to fruitful further insight into the role of fluctuations
and spatial correlations on ecosystems diversity.
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23. U.C. Täuber, Critical dynamics, lecture notes, 2006

http://www.phys.vt.edu/tauber/

24. H. Risken, The Fokker-Planck Equation - Methods of
Solution and Applications (Springer-Verlag, Berlin, 1984)

25. The Wolfram Functions Site,
http://functions.wolfram.com

26. J. Cremer, Diploma thesis, 2007
27. A. Hastings, Ecol. Lett. 4, 215 (2001)
28. A. Hastings, Trends Ecol. Evol. 19, 39 (2004)
29. M.A. Nowak, R.M. May, Nature 359, 826 (1992)
30. V. Colizza, R. Pastor-Satorras, A. Vespignani, Nat. Phys.

3, 276 (2007)


	Introduction
	Stochastic model
	Deterministic dynamics
	Stochastic description
	Extinction time
	Conclusions
	References

