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Abstract. We investigate the delocalization transition appearing in an exclusion process with two internal
states, respectively on two parallel lanes. At the transition, delocalized domain walls form in the density
profiles of both internal states, in agreement with a mean-field approach. Remarkably, the topology of the
system’s phase diagram allows for the delocalization of a (localized) domain wall when approaching the
transition. We quantify the domain wall’s delocalization close to the transition by analytic results obtained
within the framework of the domain wall picture. Power law dependences of the domain wall width on
the distance to the delocalization transition as well as on the system size are uncovered, they agree with
numerical results.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion – 05.60.-k Trans-
port processes – 64.60.-i General studies of phase transitions – 72.25.-b Spin polarized transport

1 Introduction

Driven one-dimensional transport phenomena [1] cur-
rently receive much attention as they constitute a chal-
lenging class of non-equilibrium dynamical systems. In
such systems, collective effects induce unexpected phe-
nomena, including, e.g., boundary-induced phase transi-
tions [2] or pattern formation [3]. Possible applications are
found in a large variety of contexts, ranging from biology
(e.g. the motion of ribosomes along mRNA [4] or molec-
ular motors on intracellular filaments [5–11]) to electron
hopping transport with applied voltage [12,13] and vehic-
ular highway traffic [14,15].

As unifying descriptions of such non-equilibrium sys-
tems are still lacking, much effort is devoted to the un-
derstanding of particular models and the identification
of universal properties as well as analytic methods. In
this context, the Totally Asymmetric Exclusion Process
(TASEP) has emerged as a paradigm (see, e.g., [16,17]
for a review). There, particles move unidirectionally from
left to right through a one-dimensional lattice. The in-
jection, respectively extraction rates at the left, respec-
tively right boundaries serve as control parameters; tun-
ing them, different phases of the stationary-state density
are observed. Although being exactly solvable [18–20], a
mean-field (MF) approach already yields the exact phase
diagram, originating in an exact MF current-density rela-
tion [18]. Beyond MF, fluctuations have been successfully
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taken into account in the framework of the domain wall
picture [21,22]. There, one considers a domain wall sepa-
rating a low-density (LD) region from a high-density (HD)
one. The domain wall’s dynamics yields information about
the phase behavior and boundary effects arising in finite
systems.

Recently, we have proposed a generalization of TASEP
where particles possess two weakly coupled internal
states [13,23]. As an example, these internal states may
correspond to different parallel lanes in vehicular traf-
fic on highways [14]. Concerning intracellular transport,
microtubules consist of typically 12–14 parallel lanes,
and molecular motors progressing on them may (though
rarely) switch between these lanes. Our work provides a
minimal model that takes such lane changes into account.
Also, the internal states may describe spin states of elec-
trons, e.g., when performing hopping transport through a
chain of quantum dots [12], suggesting possible applica-
tion of our model to spintronics devices.

In the present paper, we adopt the language of spins
for the internal states. The system’s dynamics, described
in the following, is depicted in Figure 1. Particles with
spin-up (-down) state enter at the left boundary at rate
α↑ (α↓), under the constraint of Pauli’s exclusion princi-
ple. The latter means that each lattice site may at most
be occupied by one particle of a given state, such that
particles with spin-up and spin-down may share one site,
but no two spin-up or spin-down particles are allowed. (In
the context of multi-lane traffic, this translates into simple
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Fig. 1. (Color online) Illustration of an exclusion model with
two internal states, denoted as spin-up (↑) and spin-down (↓).
Particles are injected at the left boundary at rates α↑, α↓, and
extracted at the right at rates β↑, β↓. Within bulk, particles
move unidirectionally to the right, or flip their state (at rate
ω), always obeying Pauli’s exclusion principle.

site exclusion.) Within the lattice, particles hop to the
neighboring right lattice site at constant rate (which we
set to unity), again respecting Pauli’s exclusion principle.
Spin-flip events may occur, we denote the respective
rate by ω. Finally, particles are extracted at the right
boundary at rate β↑ (β↓), depending on their spin state.

In [13,23] we have taken advantage of a MF approach
in a continuum limit, see, e.g. [24] for a review, to de-
scribe the emerging non-equilibrium stationary density
profiles. Comparison to data from stochastic simulations
has, through finite-size scaling, uncovered an apparent ex-
actness of the analytic results in the limit of large system
sizes. We have traced back this exactness to the weak cou-
pling of the two internal states, see below, as well as the
exactness of the MF approach for TASEP [16]. As it im-
plies the exactness of the analytically derived phase dia-
grams (see Fig. 2 for a two-dimensional cut), we have full
knowledge of the system’s phase behavior. The latter ex-
hibits a rich variety of phases, in particular, a localized
domain wall, separating a low-density (LD) from a high-
density (HD) region, may emerge in the density profile
of one spin state. We refer to this situation as a coexis-
tence of LD and HD, abbreviated as LD-HD. Continuous
as well as discontinuous transitions between the differ-
ent phases appear and induce multicritical points (e.g.,
AIN and AEX in Fig. 2). Hereby, as we already announced
in [13,23], domain wall delocalization appears at the dis-
continuous transition. Namely, as an example, consider
the red (grey) line in Figure 2. It crosses a discontinuous
transition, which separates two LD-HD phases. In both,
localized domain walls emerge, but at different positions
in bulk. Upon crossing the delocalization transition along
the red line, the domain wall delocalizes, and then localizes
again at a different position. The aim of this article is the
investigation of the domain wall’s delocalization process
when approaching the discontinuous transition.

In this paper, we present detailed investigations on
the delocalization transition. Starting from MF consid-
erations, we show that at the transition line delocalized
domain walls appear in the density profiles of both spin
states. More precise, the MF approach predicts a one-
parameter family of solutions with domain walls for spin-
up and spin-down, which we conclude to perform coupled
random walks. Further on, including fluctuations via the
domain wall picture allows to quantify the delocalization
of a localized domain wall when approaching the delocal-

Fig. 2. (Color online) Phase diagrams for the density of spin-
up (a) and spin-down (b): two-dimensional cuts for fixed values
of α↓ = 0.25, β↓ = 0.3 and in the asymptotic limit of large Ω.
Hereby, Ω = ω/L is the gross spin-flip rate. Lines of contin-
uous transitions (thin) intersect the delocalization transition
line (bold) in multicritical points AIN and AEX. The scope of
this paper is to elucidate the system’s behavior at the delocal-
ization transition as well as when approaching the latter along
the path shown in red (or grey).

ization transition, e.g. along the path depicted in red (or
grey) in Figure 2.

Domain wall fluctuations have been studied previously
for the TASEP [21,22] as well as for asymmetric exclu-
sion processes with particle creation and annihilation in
bulk [11,25,26]. In the TASEP, a delocalized domain wall
arises at the coexistence line separating the low- from the
high-density phase, while localized domain walls do not
occur. In general, boundary layers form; their localiza-
tion length can be calculated taking fluctuations into ac-
count. In contrast, particle creation and annihilation in
bulk leads to the emergence of localized domain walls,
while delocalization no longer arises [25–29]. In this situa-
tion, fluctuations induce a finite width of the domain wall
distribution which can be computed analytically within
the domain wall picture [25,26].

As a main difference to the above models, the system
which we study in this article exhibits both localized and
delocalized domain walls. This peculiarity enables us, by
studying the effects of fluctuations near the delocalization
transition, to investigate the delocalization of a localized
domain wall. We find that the widths of the emerging
boundary layers and localized domain walls obey, concern-
ing the limit of infinite system size, similar scaling laws
as do arise in TASEP, respectively TASEP with particle
attachment and detachment in bulk. However, in addi-
tion, the present model allows us to perform studies of
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the scaling behavior when approaching the delocalization
transition.

The outline of this paper is the following. In the next
section we review the MF approach (see our previous ar-
ticle [23] for a detailed discussion), and present the solu-
tion for the density profiles at the delocalization transi-
tion line. The solution turns out to be not unique, but
is a one-parameter family, indicating the delocalization.
Our stochastic simulations are described in Section 3. Sec-
tion 4 goes beyond MF by taking fluctuations into ac-
count. Within the domain wall picture, we investigate the
delocalization of a domain wall when approaching the de-
localization transition. As a result, we find power law de-
pendences for the width of the domain wall distribution
on the system size and the distance to the delocalization
transition line. Our conclusions are presented in Section 5.

2 Predictions from the mean-field approach

We are interested in the stationary density profiles which
emerge in the system’s non-equilibrium steady state.
Therefore, denote the occupation number of site i for spin-

up, respectively spin-down state by n↑
i , respectively n↓

i ,

i.e. n
↑(↓)
i ∈ {0, 1}, depending on whether this site is oc-

cupied by a particle with corresponding spin state or not.
Performing sample averages, we obtain the average occu-

pation, ρ
↑(↓)
i ≡ 〈n

↑(↓)
i 〉. In the mean-field (MF) approxi-

mation, higher-order correlations between the occupation
numbers are neglected, i.e. we assume

〈nr
i n

s
j〉 = ρr

i ρ
s
j , r, s ∈ {↑, ↓}. (1)

The dynamical rules of the system lead to equations for
the densities in the stationary state; see reference [23] for
a detailed discussion. Further on, in a continuum limit,
the total length of the lattice is set to unity and the limit
of number of lattice sites L → ∞ is considered. Hereby,

the densities ρ
↑(↓)
i approximate smooth functions ρ↑(↓)(x)

with x ∈ [0, 1]; for the latter, we eventually obtain two
coupled differential equations:

∂xj↑ = Ω[ρ↓ − ρ↑], ∂xj↓ = Ω[ρ↑ − ρ↓]. (2)

Here, we have defined currents for the individual spin
states: j↑(↓)(x) = ρ↑(↓)(x)[1 − ρ↑(↓)(x)]. Also, the gross
spin-flip rate Ω = ωL was introduced; in a mesoscopic
scaling, we keep this rate fixed when performing the limit
L → ∞, see references [27,28]. In this way, competition
between the bulk processes (spin flips) and the bound-
ary processes (particle injection and extraction) emerges.
This weak coupling is opposed to strong coupling, where
ω is kept constant when considering large systems, which
leads to different effects [30–32]. A closed analytic form
for the solution to equations (2) is feasible and has been
presented in [23]. It builds on the observation that bulk
processes do not change the number of particles in the
system, such that the total particle current in bulk is con-
served, i.e. it does not exhibit spatial dependences.

The injection and extraction processes lead to bound-
ary conditions for equations (2):

ρ↑(0) = α↑

eff ,

ρ↓(0) = α↓

eff ,

ρ↑(1) = 1 − β↑

eff ,

ρ↓(1) = 1 − β↓

eff , (3)

where we have introduced effective rates α
↑(↓)
eff , β

↑(↓)
eff ac-

cording to

α
↑(↓)
eff = min

[
α↑(↓),

1

2

]
,

β
↑(↓)
eff = min

[
β↑(↓),

1

2

]
. (4)

They reflect the fact that bulk processes limit the individ-
ual spin currents to maximal values of 1/4, corresponding
to densities of 1/2. Injection or extraction rates exceeding
this value cannot lead to larger currents, but effectively
act as 1/2 (see [23]).

The boundary conditions (3) apparently overdeter-
mine the system of two differential equations (2). Indeed,
two types of singularities may occur where the densi-
ties exhibit discontinuities: boundary layers (discontinu-
ity at the boundary) and domain walls (discontinuity in
bulk). An analytic description of the domain wall posi-
tions is feasible from the observation that the spin cur-
rents j↑(↓)(x) = ρ↑(↓)(x)[1 − ρ↑(↓)(x)] at these positions
must be continuous. The only solution to this condition is
that a density ρ↑(↓) changes to the new value 1 − ρ↑(↓) at
the position of the discontinuity.

As particles cannot leave the system in bulk, the parti-
cle current J = j↑ + j↓ is spatially conserved. In case that
no boundary layer occurs at the left, i.e. the densities do
not have any discontinuities there, it is given from (3) by

the value JIN = α↑

eff(1−α↑

eff)+α↓

eff(1−α↓

eff). In this case,
the system is dominated by injection processes; we refer
to the region in parameter space, where this behavior oc-
curs, as the IN-region. On the other hand, also extraction
can determine the system’s behavior, the particle current

is then given by JEX = β↑

eff(1 − β↑

eff) + β↓

eff(1 − β↓

eff), oc-
curring in the EX-region.

The delocalization transition occurs at JIN = JEX.
There, the system is in a superposition of the injection-
dominated and the extraction-dominated behavior. In this
situation, delocalized domain walls appear in the density
profiles of both spin states. Indeed, only when JIN = JEX,
density profiles satisfying the boundary conditions at the
left boundary as well as at the right one are feasible. In-
stead of discontinuities at the boundaries, they exhibit
discontinuities within bulk: domain walls. In the follow-
ing, we want to present the MF picture for the density
behavior at the delocalization transition and show that a
one-parameter family of solutions emerges within the MF
approach.
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Fig. 3. Domain walls in the densities of both spin states at the
delocalization transition: results from the MF approach. The
positions of the domain walls are only determined up to one
degree of freedom: choosing the position x↑

w for the domain wall
of spin-up yields the position x↓

w for spin-down and vice versa.
The densities found in stochastic simulations are the average
over this one-parameter family of solutions. Parameters are
α↑ = 0.45, α↓ = 0.2, β↑ = 0.36, β↓ = 0.23 and Ω = 0.3.

2.1 The one-parameter family of analytic solutions

The generic picture of the MF analytic solution at the
delocalization transition is presented in Figure 3. As the
equation JIN = JEX is fulfilled, the density profiles can
match the left as well as the right boundary conditions.
This implies that, in bulk, domain walls arise at posi-
tions x↑

w and x↓
w in spin-up, respectively spin-down state;

we have chosen x↑
w < x↓

w, the other case is obtained by
the symmetry of the two spin states. In the vicinity of
the left boundary, the densities are given by the ana-

lytic solution ρ↑,↓
l obeying the left boundary conditions

ρ↑l (x = 0) = α↑

eff , ρ↓l (x = 0) = α↓

eff . At the point x↑
w,

the density of spin-up jumps from the value ρ↑l (x
↑
w) to the

value 1 − ρ↑l (x
↑
w), while the density of spin-down is con-

tinuous. To the right of x↑
w, the densities follow a different

branch of analytic solution, we name it ρ↑,↓
m as the inter-

mediate branch. It is determined by the boundary con-

ditions ρ↑m(x↑
w) = 1 − ρ↑l (x

↑
w) and ρ↓m(x↓

w) = ρ↓l (x
↑
w). At

the point x↓
w, the density of spin-down changes discontin-

uously from a value ρ↓m(x↓
w) to a value 1 − ρ↓m(x↓

w), while
the density of spin-up remains continuous. To the right of
x↓

w, the densities obey the analytic solution ρ↑,↓
r satisfying

the boundary conditions at the right: ρ↑r(x = 1) = 1−β↑

eff ,

ρ↓r(x = 1) = 1 − β↓

eff .
Now, for the situation to be feasible, we have addi-

tional conditions coming from considering the continuity
of the spin currents at the point x↓

w, namely ρ↑r(x
↓
w) =

ρ↑m(x↓
w) and ρ↓r(x

↓
w) = 1−ρ↓m(x↓

w). As the particle current
is conserved, these two conditions are not independent:
the validity of one implies the validity of the other. Only
one condition thus exists for two variables, the latter being
the positions of the domain walls x↑

w and x↓
w. Our consid-

erations therefore leave us with a one-parameter family
of solutions; as parameter, we can, e.g., take one of the
domain wall positions, x↑

w or x↓
w.

Fig. 4. (Color online) Analytic versus numerical results for the
density profiles at the delocalization transition. The analytic
approach predicts a one-parameter family of solutions, we show
the one with the minimal domain wall positions (red or grey)
and with the maximal one (blue or dark grey) as well as an
intermediate (light blue or light grey). Stochastic simulations
yield an average over these solutions, resulting in densities in-
terpolating between the extrema (black). Parameters are the
same as in Figure 3.

2.2 Spatial boundaries for the domain walls

In the course of time, the system takes all states speci-
fied by the one-parameter family of solutions. Averaged
over sufficiently long times, the densities represent the av-
erage over the latter, resulting in a smoothening of the
density profiles. In Figure 4, we show how the results
may look like. We observe that certain spatial boundaries

(x
(min)
w and x

(max)
w in the above picture) exist. They de-

fine the bulk region where the domain walls may appear.
The description of these boundaries is the scope of this
subsection.

The boundaries for the residence regions of the domain
walls originate in the constraint that the domain wall po-
sitions must lie between 0 and 1. Indeed, let us consider

the minimal positions x
↑(min)
w , x

↓(min)
w which are feasible

for the domain walls in the spin-up and spin-down state.
We had found in Section 2.1 that fixing the domain wall
position in the density profile of one of the states deter-
mines the position of the other domain wall. The situation

x
↓(min)
w = x

↑(min)
w = 0 can thus only emerge if x

↓(min)
w = 0

induces x
↑(min)
w = 0 (corresponding to the multicritical

point AIN, see the detailed discussion in Ref. [23]). In gen-
eral, only one of these minimal domain wall positions is
at 0, and induces a minimal position for the other one
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which is larger than 0. Analogously, in general, a maximal
domain wall position of 1 only occurs for one of the spin
states, and induces a domain wall position smaller than 1

for the other. The exceptional case x
↓(max)
w = x

↑(max)
w = 1

occurs at the multicritical point AEX, as the latter lies at
the transition from a coexistence phase to a HD phase, for
both spin states, see reference [23].

Which situation occurs, may be read off from the phase
diagrams by considering the phases in the vicinity of the
delocalization transition. As an example, we consider a
point on the delocalization transition line in Figure 2(a),
(b), at the intersection with the path shown in red. In
its vicinity, in the EX-region, the density of spin-down is
in a pure HD phase, such that a domain wall at posi-
tion x↓

w = 0 forms there when approaching the delocal-
ization transition. The density of spin-up exhibits a local-
ized shock at a position 0 < x↑

w < 1. We thus observe

x
↓(min)
w = 0 and 0 < x

↑(min)
w < 1. Similarly, considering

the IN-region in the vicinity of this point yields the maxi-

mal feasible domain wall positions there: x
↓(max)
w = 1 and

0 < x
↑(max)
w < 1.

The analytic solutions to the density profiles in the

situation of x
↑(min)
w , x

↓(min)
w (red) as well as for x

↑(max)
w ,

x
↓(max)
w (blue) are shown in Figure 4. The intermediate

solution (light blue) varies between these two extrema.
In the system, averaged over sufficiently long time, this
results in smoothened density profiles. In Figure 4 we
show the results from stochastic simulations as black lines,
agreeing with our analytic considerations.

3 Stochastic simulation methods

To validate our analytic calculations, we have carried
out extensive stochastic simulations. An efficient simula-
tion method originally due to Gillespie [33,34] was im-
plemented. There, in each time step, a random number
determines whether particle injection, particle extraction,
a spin-flip event or a particle hopping forward may occur
in the next time step. The time interval to the next process
is chosen from an exponential waiting time distribution.

Simulations in the neighborhood of the delocalization
transition need long waiting times until the densities reach
stationary profiles, due to the random walks performed
by the domain walls. We carried out simulations with up
to 108 time windows, each consisting of 10 × L steps of
updating. An example of resulting density profiles is given
in Figure 4 for a point on the delocalization transition
line, the densities are observed to interpolate between two
extremal analytic solutions.

In the subsequent section, we investigate the scaling
of the width σ of the domain wall when approaching the
delocalization transition. For the numerical data, we have
computed the stationary density profiles for system sizes
of L = 5000 and L = 1000 at different distances to the
delocalization transition. The width σ was obtained by fit-
ting the densities profiles in the vicinity of the domain wall
with the function A · erf[(x− b)/σ]+C +Dx, with param-
eters A, b, C, D, σ. The first term describes a Gaussian

Fig. 5. The width σ of the domain wall distribution in the
spin-up density profile for the case of a localized domain wall
there, at a small distance d↑ to the delocalization transition.
Numerical results are shown in a double logarithmic scale, de-
pending on |Ld↓|. The data are obtained from system sizes of
L = 5000 (open circles) and L = 10000 (open boxes), with d↓

varied between 1× 10−4 and 1× 10−3. The solid line indicates
the slope − 1

2
. Approximately, we recover σ ∼ |Ld↓|−1/2.

distribution of the domain wall, while the latter two terms
account for the background density profile (to linear order
in x). The results are shown in Figure 5 and agree well with
the analytic predictions. We attribute deviations to the
fact that for large σ the above fitting becomes less accurate
as the domain wall distribution deviates from a Gaussian.

4 Beyond mean-field: Approaching the

delocalization transition

In the previous sections, we have described how delocal-
ized domain walls in the density profiles of both states ap-
pear at the delocalization transition. Here, we investigate
the emergence of delocalization when approaching the de-
localization line by applying the domain wall picture. In-
cluding fluctuations, the latter allows us to calculate the
width of the domain wall distribution for finite system
sizes L. It diverges as one approaches the delocalization
line, yielding delocalized domain walls.

4.1 The domain wall picture

The domain wall picture [21] allows to include fluctu-
ations, such as the particle-number fluctuations in the
TASEP [22], helping in understanding its dynamics [35],
and thus go beyond the MF approximation. In this ap-
proach, we start with the assumption that sharp and
localized domain walls appear in the density profiles of
both states. Injection and extraction of particles as well as
spin-flips induce dynamics for them, they perform random
walks. Our focus is on the emerging stationary state. As
the latter arises in a non-equilibrium system, it need not
obey detailed balance. Writing down the master equation
for the random walk, we are able to calculate the fluctu-
ations of the domain wall positions around the stationary
values, yielding the width of the domain walls or boundary
layers which form in finite systems.
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Table 1. Six processes lead to changes in the domain wall posi-
tions. This table lists their probabilities and resulting changes
δx↑

w, δx↓
w.

Process Probability W δx↑
w δx↓

w

i) α↑

eff
(1 − α↑

eff
) −L−1Δ−1

↑ 0

ii) β↑

eff
(1 − β↑

eff
) L−1Δ−1

↑ 0

iii) α↓

eff
(1 − α↓

eff
) 0 −L−1Δ−1

↓

iv) β↓

eff
(1 − β↓

eff
) 0 L−1Δ−1

↓

v) Ω
R

1

0
ρ↑(x)[1 − ρ↓(x)]dx L−1Δ−1

↑ −L−1Δ−1

↓

vi) Ω
R

1

0
ρ↓(x)[1 − ρ↑(x)]dx −L−1Δ−1

↑ L−1Δ−1

↓

The dynamics induced by entering and exiting parti-
cles or spin-flips is the following. If the total number of
particles of given internal state in the system is increased
by one, the domain wall in the density profile of this state
moves a certain value to the left. In the other case, if the
number of particles of given state is decreased by one, the
domain wall of this state moves to the right.

Denote Δ↑, respectively Δ↓ the height of the domain
wall in the density profile of the spin-up, respectively spin-
down states. They are functions of the domain wall posi-
tions: Δ↑ = Δ↑(x

↑
w, x↓

w), Δ↓ = Δ↓(x
↑
w, x↓

w). Increasing the
number of spin-up particles by one shifts the position x↑

w

by the value δx↑
w = −L−1Δ−1

↑ , and decreasing its number

results in a shift δx↑
w = L−1Δ−1

↑ . The changes δx↓
w result

analogously from particles with spin-down entering and
exiting.

4.2 Fokker-Planck equation and the generic form of
the domain wall distribution

In our model, six processes alter the particle number of
one or both internal states:

i) A particle with spin-up entering at the left boundary.
ii) A particle with spin-up leaving at the right boundary.
iii) A particle with spin-down entering at the left bound-

ary.
iv) A particle with spin-down leaving at the right bound-

ary.
v) A particle with spin-up flipping to spin-down in bulk.
vi) A particle with spin-down flipping to spin-up in bulk.

Their probabilities and resulting changes δx↑
w, δx↓

w are
listed in Table 1.

To shorten our expressions, we introduce the vectors
xw = (x↑

w, x↓
w) and δxw = (δx↑

w, δx↓
w). Defining P (xw, t)

as the probability density of finding the domain wall po-
sitions x↑

w, x↓
w at time t, the processes i)-vi) allow us to

write down the master equation

∂tP (xw, t) =
∑
δx

w

{
P (xw + δxw, t)W(xw + δxw → xw)

−P (xw, t)W(xw → xw + δxw)
}
. (5)

The transition probabilities W(xw → xx + δxw) are
the ones listed in Table 1.

For the expectation values of the changes δx↑
w, δx↓

w we
obtain

〈δx↑
w〉 = L−1Δ−1

↑

{
β↑

eff(1 − β↑

eff) − α↑

eff(1 − α↑

eff)

+Ω

∫ 1

0

[ρ↑(x) − ρ↓(x)]dx

}
,

〈δx↓
w〉 = L−1Δ−1

↓

{
β↓

eff(1 − β↓

eff) − α↓

eff(1 − α↓

eff)

+Ω

∫ 1

0

[ρ↓(x) − ρ↑(x)]dx

}
, (6)

which, of course, depend on the densities ρ↑ and ρ↓ and
thereby on the domain wall positions x↑

w, x↓
w. Investigating

the fixed point of the random walk, i.e. the values x̄↑
w, x̄↓

w

where 〈δx↑
w〉 = 〈δx↓

w〉 = 0, we find as a necessary condition

α↑

eff(1−α↑

eff)+α↓

eff(1−α↓

eff) = β↑

eff(1−β↑

eff)+β↓

eff(1−β↓

eff), or
JIN = JEX, describing the delocalization transition. Thus,
domain walls within the density profiles of both states are
only feasible there; otherwise, at most one of the domain
wall positions, say x̄↑

w, can lie inside the bulk. The other
one, say x̄↓

w, is driven outside of the system and turns
into a boundary layer. We then set x̄↓

w = 0 or x̄↓
w = 1,

depending on whether a HD or a LD phase occurs. With
this convention, the values x̄↑

w, x̄↓
w are given by the MF

analytic solution.
We are interested in the fluctuations of the domain wall

positions around the mean values x̄↑
w, x̄↓

w, and therefore
define the quantities

y↑ = x↑
w − x̄↑

w ,

y↓ = x↓
w − x̄↓

w , (7)

as the deviations. Again, they are arranged in a vector
y = (y↑, y↓), and we have δy = δxw.

Applying the Kramers-Moyal expansion [36] of the
master equation (5) around the mean-field values to sec-
ond order in the quantities y↑, y↓ results in the Fokker-
Planck equation

∂tP (y, t) = −∂i[ai(y)P (y, t)] +
1

2
∂i∂j [Bij(y)P (y, t)]. (8)

Here, the indices i, j stand for spin-up and spin-down.
In the above equation, the summation convention implies
summation over them. The partial derivative ∂i is the
short-hand notation of ∂/∂yi.

The quantities ai and Bij are, according to the
Kramers-Moyal expansion

ai(y) =
∑
δy

δyiW(y → y + δy),

Bij(y) =
∑
δy

δyiδyjW(y → y + δy). (9)

For our case, they are given in Appendix A.
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Now, we expand the Fokker-Planck equation around
y = 0, using van Kampen’s linear noise approxima-
tion [37]. As Bij(y = 0) 
= 0, we consider approxi-
mately Bij(y) ≈ Bij(y = 0) ≡ Bij . On the other hand,
ai(y = 0) = 0 is possible, and we include the first order

ai(y) ≈ ai(y = 0) + yj∂jai(y)|y=0 . (10)

Defining Aij = ∂jai(y)|y=0 and ai ≡ ai(y = 0), the

Fokker-Planck equation (8) turns into

∂tP (y, t) = −ai∂iP (y, t) − ∂i

[
Aijy

jP (y, t)
]

+
1

2
Bij∂i∂jP (y, t). (11)

The above expanded Fokker-Planck equation may be
solved by the ansatz

P (y, t) ∼ exp

[
−

1

2
(Σ−1)ijy

iyj + ξ−1
i yi

]
, (12)

which is the generic form of the domain wall, respectively
boundary layer distribution. When put into equation (11),
it leads to a matrix equation for Σ

ΣAT + AΣ + B = 0, (13)

the solution is given in Appendix A. ξ is then determined
by

ξ−1
i = −(Σ−1)ijA

−1
jk ak . (14)

Here, we continue by discussing the physical meaning
of Σ and ξ. First, assume that a domain wall emerges in
the density profile of the spin-up states. Then, x̄↑

w lies in
bulk, and we have a↑ = 0. According to equation (14),

this implies ξ−1
↑ = 0. The domain wall distribution in the

spin-up density is therefore Gaussian and its width given
by (Σ↑↑)

1/2. Similar behaviour is obeyed by the localized
domain wall that arises in exclusion processes with particle
creation and annihilation in bulk [25,26].

Second, for a boundary layer forming in the density
of spin-up states, it follows that a↑ 
= 0 and therefore

also ξ−1
↑ 
= 0. As for large enough systems fluctuations

are small (y↑, y↓  1), the contribution to the domain
wall distribution coming from ξ−1

↑ y↑ is the dominating
one. The value ξ↑ thus describes how far the boundary
layer extends into bulk, we refer to it as the localization

length. Such exponential decay also emerges for the bound-
ary layer in TASEP [21,22].

4.3 Approaching the coexistence line

When the delocalization line is approached, we know from
the MF analysis that domain walls delocalize. In the do-
main wall picture, this must result in a diverging width
of the domain wall, respectively, boundary layer distribu-
tions. In this section, we want to show that this diver-
gence indeed emerges within the above description. Also,

we calculate the corresponding exponents and compare
our findings to stochastic simulations.

We define the quantities

d↑ =β↑

eff(1−β↑

eff)−α↑

eff(1−α↑

eff)+Ω

∫ 1

0

[ρ↑−ρ↓]dx,

d↓ =β↓

eff(1−β↓

eff)−α↓

eff(1−α↓

eff)+Ω

∫ 1

0

[ρ↓−ρ↑]dx, (15)

as a measure of distance to the delocalization transition
line, where d↑ = d↓ = 0 is encountered. Our aim is to
calculate Σ and ξ for d↑, d↓ → 0, i.e. along a path that
ends at the coexistence line.

Different paths are possible. Applying the two symme-
tries of the model, they fall into two classes. First, we may
have a localized domain wall in the density of one of the
internal states, and a pure LD or HD phase for the other
one. In the second class, the densities of both states are
in pure LD or HD phases.

Note that the second case is similar to the situation
in TASEP. There as well we may approach the coexis-
tence line on a path along which LD or HD is encoun-
tered; in this situation, the localization length ξ diverges.
In our model, exactly the same behavior emerges: the lo-
calization lengths ξ↑, ξ↓, describing the boundary layers
in the densities of spin-up, respectively spin-down state,
both diverge.

The first case, corresponding to the path shown in red
in Figure 2, does not possess an analogy to earlier studied
ASEP models. Also off the delocalization transition line,
we have a domain wall, which is localized. It allows us to
study how its width diverges when approaching the IN-
EX-boundary, i.e. how its delocalization arises.

We start our considerations with the first case. As a
representative example, a situation with a localized do-
main wall in the spin-up density and a pure LD or HD
phase for spin-down is studied. This case implies d↑ = 0

and d↓ = β↑

eff(1 − β↑

eff) + β↓

eff(1 − β↓

eff) − α↑

eff(1 − α↑

eff) −

α↓

eff(1 − α↓

eff) 
= 0. Both d↓ < 0 and d↓ > 0 are possible.

Our focus is on the width σ = (Σ↑↑)
1/2 of the domain

wall distribution in the spin-up density. More specific, we
aim at finding the scaling behavior of σ depending on the
system size L and the distance d↓. We expect that σ → 0
for increasing system size L → ∞ on the one hand, and
that σ diverges for d↓ → 0 on the other hand.

In Appendix A, we solve the expanded Fokker-Planck
equation (11). Considering the solution (A.9), we rec-
ognize that Σ ∼ (det A)−1, and from (A.5) we infer
det A ∼ d↓. Combining these two results, we arrive at
σ = (Σ↑↑)

1/2 ∼ |d↓|−1/2, such that σ diverges when the
delocalization transition line is approached. The mathe-
matical reason is that one eigenvalue of A goes to zero
(such that detA → 0). Of course, the eigenvector to the
vanishing eigenvalue corresponds to the direction along
the one-parameter curve on which the mean-field values
x̄↑

w, x̄↓
w can reside when the delocalization transition line is

reached. Thus, the divergence of the width of the domain
wall distribution originates in the one degree of freedom
which exists at the delocalization transition.
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The dependence of σ on the system size L is also of
interest. Remembering A ∼ L−1 and B ∼ L−2, and with
help of equation (A.9), we arrive at σ ∼ L−1/2. Thus, with
increasing L, the domain wall distribution gets sharper
aligned to its mean value. Together with the previous re-
sult, we obtain the following scaling behavior for the width
σ = (Σ↑↑)

1/2 of the domain wall distribution in the spin-
up density:

σ ∼ |Ld↓|−1/2 . (16)

Comparing these results to stochastic simulations, see Fig-
ure 5, we recover a good agreement.

In the second case, the densities of both states are in
pure LD or HD phases, i.e. boundary layers occur in both
density profiles. As discussed at the end of Section 4.2,
the latter implies a↑, a↓ 
= 0, thus ξ↑, ξ↓ 
= 0 and ξ↑, ξ↓ are
found to be the localization lengths, describing how far the
boundary layers extend into bulk. We are thus interested
in their scaling behavior.

Both d↑, d↓ are different from 0; approaching the de-
localization transition line translates into d↑, d↓ → 0.
Our starting point is again the solution to the expanded
Fokker-Planck equation (11) given in Appendix A. From
equation (A.9) we infer that Σ ∼ (det A)−1. Together with
ai ∼ di and equation (14), this implies for the localization
lengths ξi ∼ (di)−1. For the scaling behavior in L, we ob-
serve ai ∼ L−1 and find ξi ∼ L−1. Together, the scaling
behavior is given by

ξ↑ ∼ (Ld↑)−1 ,

ξ↓ ∼ (Ld↓)−1 . (17)

As discussed in the beginning of this subsection, the
same scaling behavior emerges in TASEP for the localiza-
tion length ξ of the boundary layer when approaching the
coexistence line.

5 Summary

The appearance of a domain wall delocalization is a partic-
ular feature of the exclusion process with internal states
introduced in references [13,23]. Indeed, in the simplest
driven exclusion process, the TASEP [2,16], such a de-
localization of a localized domain wall does not emerge.
There, boundary layers characterize the different phases.
A delocalized domain wall forms at the phase bound-
ary between low- and high-density phases, while local-
ized domain walls do not build up. Upon coupling to ex-
ternal reservoirs [27,28], localized domain walls may ap-
pear in bulk, separating a low-density from a high-density
region. Varying the system’s parameters, their location
changes continuously, and they may leave bulk through
the left or the right boundary, causing continuous tran-
sitions to pure LD or HD phases. Domain wall delocal-
ization, corresponding to a discontinuous transition, does
not emerge.

The exclusion process with internal states exhibits, in
addition to continuous phase transitions similar to the
ones described above, discontinuous transitions. In par-
ticular, in phase space, two regions with localized domain

walls may be separated by such a discontinuous transi-
tion; there, the domain wall position jumps from a certain
location in bulk to another. This jump is connected to a
delocalization of the domain wall: Approaching the discon-
tinuous transition, the domain wall delocalizes and, upon
crossing the transition, re-localizes at the other position.

We have presented a detailed study of this delocaliza-
tion phenomenon. First, we have investigated the system’s
behavior at the discontinuous transition. From mean-field
considerations, delocalized domain walls have been iden-
tified which perform coupled random walks, resulting in
smoothened density profiles that lack sharp shocks. Sec-
ond, we have investigated the delocalization of a localized
domain wall upon approaching the discontinuous tran-
sition. Using the domain wall picture, we have set up
a quantitative description of the delocalization. Start-
ing from coupled random walks of the domain walls, we
have expanded the corresponding master equation in the
Kramers-Moyal formalism, used the linear noise approx-
imation by van Kampen and obtained an analytically
solvable Fokker-Planck equation. The latter has revealed
power law dependences of the domain wall width σ on the
distance d to the delocalization transition and the system
size L: σ ∼ |Ld|−1/2. These findings have been validated
by stochastic simulations.

As in similar driven diffusive systems where a local-
ized domain wall appears [27,28], the domain wall’s width
tends to zero with increasing system size, and is propor-
tional to its inverse square root. However, in the present
system, the domain wall can delocalize, namely upon ap-
proaching the discontinuous transition. There, the width
diverges, being proportional to the inverse square root of
the distance to the transition.

We believe that the above-discussed domain wall de-
localization represents a robust and generic phenomenon
that may emerge in other driven diffusive systems as well,
such as weakly coupled antiparellel transport [38] or in
models for intracellular transport on multiple lanes that
take motors’ internal states into account [39,40]. Its identi-
fication in other non-equilibrium systems will shed further
light on their universal phenomenology. Its observation in
real systems, such as intracellular transport of kinesins
moving on the parallel protofilaments of a microtubulus,
constitutes a challenge for future research.

Financial support of the German Excellence Initiative via the
program “Nanosystems Initiative Munich” and the German
Research Foundation via the SFB TR12 “Symmetries and
Universalities in Mesoscopic Systems” is gratefully acknowl-
edged. Tobias Reichenbach acknowledges funding by the Elite-
Netzwerk Bayern.

Appendix A. The Fokker-Planck equation

and its solution

In this Appendix, we want to give more details concerning
the technical parts of Section 4. The coefficients of the
Fokker-Planck equation (8) are derived, and the solution
to the resulting matrix equation (13) is given.
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Appendix A.1. The coefficients of the Fokker-Planck
equation

The Fokker-Planck equation for the distribution of the
domain wall positions reads

∂tP (y, t) = −∂i[ai(y)P (y, t)] +
1

2
Bij∂i∂jP (y, t). (A.1)

The coefficients ai and Bij are given by equations (9),
we exemplify their calculation for a↑. According to (9),
the latter is connected to the changes y↑, arising from the
processes i), ii), v) and vi) (see Sect. 4.2). The changes to-
gether with the respective rates are read off from Table 1.
We obtain

a↑(y) = L−1Δ−1
↑

[
− α↑

eff(1 − α↑

eff) + β↑

eff(1 − β↑

eff)

+Ω

∫ 1

0

ρ↑[1 − ρ↓]dx − Ω

∫ 1

0

ρ↓[1 − ρ↑]dx

]

= L−1Δ−1
↑ d↑ , (A.2)

where we used the definitions (15) for the distances d↑,↓

to the delocalization transition. The other coefficients are
obtained along the same lines; together, they read

a↑(y) = L−1Δ−1
↑ d↑ ,

a↓(y) = L−1Δ−1
↓ d↓ ,

B↑↑(y) = L−2Δ−2
↑

{
α↑(1 − α↑) + β↑(1 − β↑) + Ωjtot

+Ω

∫ 1

0

[ρ↑(x) − ρ↓(x)]2dx

}
,

B↑↓(y) = −L−2Δ−1
↑ Δ−1

↓

{
Ωjtot

+Ω

∫ 1

0

[ρ↑(x) − ρ↓(x)]2dx

}
,

B↓↓(y) = L−2Δ−2
↓

{
α↓(1 − α↓) + β↓(1 − β↓) + Ωjtot ,

+Ω

∫ 1

0

[ρ↑(x) − ρ↓(x)]2dx

}
. (A.3)

For the expanded Fokker-Planck equation (11), the ma-
trix elements Aij are given as the derivatives Aij =
∂jai(y)|y=0:

A↑↑ = −L−1Δ−2
↑ (∂↑Δ↑)d

↑ − L−1 ,

A↑↓ = −L−1Δ−2
↑ (∂↓Δ↑)d

↑ + L−1Δ−1
↑ Δ↓ ,

A↓↑ = −L−1Δ−2
↓ (∂↑Δ↓)d

↓ + L−1Δ−1
↓ Δ↑ ,

A↓↓ = −L−1Δ−2
↓ (∂↓Δ↓)d

↓ − L−1 . (A.4)

The key point of the analysis is the observation that
in the determinant of A,

det A=L−2
{
Δ−1

↑

[
Δ−1

↑ (∂↑Δ↑) + Δ−1
↓ (∂↓Δ↑)

]
d↑

+Δ−1
↓

[
Δ−1

↓ (∂↓Δ↓) + Δ−1
↑ (∂↑Δ↓)

]
d↓

+Δ−2
↑ Δ−2

↓

[
(∂↑Δ↑)(∂↓Δ↓)−(∂↓Δ↑)(∂↑Δ↓)

]
d↑d↓

}
,

(A.5)

the terms independent of d↑, d↓ have canceled. Thus, for
d↑, d↓ → 0, we encounter det A → 0. We show in the
following that this causes the domain walls to delocalize
when d↑, d↓ → 0.

Appendix A.2. Solution of the Fokker-Planck equation

For the solution of the expanded Fokker-Planck equa-
tion (11), we already anticipated the form

P (y, t) ∼ exp

[
−

1

2
(Σ−1)ijy

iyj + ξ−1
i yi

]
. (A.6)

To solve the resulting matrix equation

ΣAT + AΣ + B = 0, (A.7)

for Σ, we write it in vector form:

⎛
⎝2A↑↑ 2A↑↓ 0

A↓↑ A↑↑ + A↓↓ A↑↓

0 2A↓↑ 2A↓↓

⎞
⎠

⎛
⎝Σ↑↑

Σ↑↓

Σ↓↓

⎞
⎠ +

⎛
⎝B↑↑

B↑↓

B↓↓

⎞
⎠ = 0. (A.8)

Note that B and Σ are symmetric. The above equation
can be inverted to give

⎛
⎝Σ↑↑

Σ↑↓

Σ↓↓

⎞
⎠= −

1

2(A↑↑ + A↓↓) detA
×

×

⎛
⎜⎝

det A + A2
↓↓ −2A↑↓A↓↓ A2

↑↓

−A↓↑A↓↓ 2A↑↑A↓↓ −A↑↑A↑↓

A2
↓↑ −2A↑↑A↓↑ det A + A2

↑↑

⎞
⎟⎠

⎛
⎝B↑↑

B↑↓

B↓↓

⎞
⎠ . (A.9)

For the scaling behavior, we observe Σ ∼ det A. When
the delocalization transition is approached, as detA →
0, also Σ → 0. Thus Σ−1, describing the widths of the
domain walls, diverges; and the domain walls delocalize.
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G.M. Schütz, Phys. Rev. E 67, 066117 (2003).

30. B. Schmittmann, J. Krometis, R.K.P. Zia, Europhys. Lett.
70, 299 (2005).

31. E. Pronina, A.B. Kolomeisky, J. Phys. A: Math. Gen. 37,
9907 (2004).

32. E. Pronina, A.B. Kolomeisky, Physica A 372, 12 (2006).
33. D.T. Gillespie, J. Comput. Phys. 22, 403 (1976).
34. D.T. Gillespie, J. Phys. Chem. 81, 2340 (1977).
35. P. Pierobon, A. Parmeggiani, F. von Oppen, E. Frey, Phys.

Rev. E 72, 036123 (2005).
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