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Cyclic �rock-paper-scissors-type� population models serve to mimic complex species interactions. Focusing
on a paradigmatic three-species model with mutations in one dimension, we observe an interplay between
equilibrium and nonequilibrium processes in the stationary state. We exploit these insights to obtain asymp-
totically exact descriptions of the emerging reactive steady state in the regimes of high and low mutation rates.
The results are compared to stochastic lattice simulations. Our methods and findings are potentially relevant for
the spatiotemporal evolution of other nonequilibrium stochastic processes.

DOI: 10.1103/PhysRevE.81.060901 PACS number�s�: 87.10.�e, 02.50.Ga, 05.40.�a

Stochastic interacting particle systems are a fruitful test-
ing ground for understanding generic principles in nonequi-
librium dynamics. Unfortunately, the treatment of such pro-
cesses is marred by the absence of detailed balance so that
the insight one has gained by analytical means is not yet
satisfactory and only few systems have been solved exactly
�1,2�. Some of them serve as a paradigm for very complex
biological and sociological systems. An example is the con-
tact process, which describes the outbreak of an epidemic,
displaying a phase transition from an absorbing to an active
state as the rate of infection is increased �3�. Another famous
process is the voter model, caricaturing opinion making. It is
proven rigorously that on a regular lattice there is a station-
ary state where the two “opinions” coexist, so long as the
dimension is larger than two, such that the random walk is
not recurrent �2,4�. Extensive studies have also been con-
ducted on the coarsening dynamics of coalescing or annihi-
lating particles, both for diffusional motion and ballistic mo-
tion of the particles �5–8�. In this context, much work was
devoted to the long time behavior of the average domain
size, which as a function of time typically displays scaling.

Frachebourg et al. �6,7� studied the coarsening dynamics
of a model known as the rock-paper-scissors �RPS� game,
one of the most widely studied prototype models for biodi-
versity �9–11�, displaying cyclic dominance between its three
agents. In this Rapid Communication we study the influence
of mutations on this model. An integral part of evolution,
mutations have been posited to promote biodiversity in mi-
crobial communities �12�. We will argue that the RPS is a
natural framework for a nonequilibrium version of the Ising-
Glauber model, which at zero temperature amounts to an
annihilating random walk. While previous studies have ad-
dressed coarsening and the transition to an absorbing state,
we focus on the description of the stationary reactive state at
finite “temperature,” i.e., interfaces between domains are cre-
ated at finite mutation rate. In the Ising-Glauber model the
interfaces perform a random walk, whereas for the RPS they
drift left or right and even move ballistically in a certain
regime. Since the coarsening dynamics is counteracted by
the creation of interfaces, the system evolves into a non-
trivial stationary state. For very large and very low mutation
rates, equilibrium turns out to be only slightly broken. Dis-

criminating between two types of mutations, we can thus
obtain asymptotically exact descriptions for the average size
of the domains in the stationary state. As the final arbiter of
the validity of our arguments we employ stochastic lattice
simulations.

On a one-dimensional integer lattice �1, . . . ,S� of size S,
the RPS can be defined by the following cyclic-dominance
reaction equations for nearest neighbors:

AB→
rA

AA, BC→
rB

BB, CA→
rC

CC , �1�

i.e., paper �A� covers rock �B�, rock crushes scissors �C�, and
scissors cuts paper. Here we presuppose left-right symmetry
such that, for instance, A can invade a neighboring B to its
left or right and we consider a Markov process in continuous
time with sequential updating. Unless otherwise stated, we
look at the symmetric case rA=rB=rC and set rA=1 to define
the time scale. These equations have been studied in detail in
�6,7�. In particular it was shown that, starting from some
random distribution, the species organize in domains that
undergo coarsening until finally—providing the system size
is finite—one species takes over the whole lattice.

In addition to the above reaction scheme for cyclic domi-
nance we allow for mutations,

A→
�r

B→
�r

C→
�r

A, A→
�l

C→
�l

B→
�l

A , �2�

where we discriminate mutation cycles to the respective
“prey” with rate �r and to the respective “predator” with rate
�l, both of which evidently conserve the cyclic symmetry.
The mutations counteract the coarsening of the system and
ensure a reactive steady state. However, for low mutation
rates, which we shall focus upon, one still expects the system
to organize in large clusters separated by interfaces. Thus it
is adequate to utilize the so-called dual description obtained
by representing the interfaces, i.e., the walls between the
domains of one species, by particles �denoted L or R� and
two consecutive spots occupied by the same species by
empty sites �. This mapping is illustrated in Fig. 1. There
are left- and right-moving interfaces, R and L, respectively.
Without mutations their number is bound to decrease when
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they interact: in LL→
1

R� �and analogous for left and right

interchanged, RR→
1

�L� two interfaces of the same kind
turn into one that moves in the converse direction and in

RL→
2

�� one has pair annihilation.
As a starting point we derive the mean-field rate

equations. Let P�R� , P�L� , P�� � be the probabilities of find-
ing an R, L, or �, respectively, at some site i. One then
assumes the system to be well mixed, i.e., the occupancy
of sites to be uncorrelated. Defining �ª�l+�r, one ob-

tains Ṗ�R�=−2P�R�2−2P�R�P�L�+ P�L�2+��P�� �+ P�L�
−2P�R��. Solving for the stationary state, where P�R�
= P�L�, the interface density becomes

n ª P�R� + P�L� = ��4/3�� + �2 − � , �3�

increasing sharply ��� for small rates and saturating to 2/3
for large rates. Notice that �r and �l are treated on equal
footing in contrast to our results below.

Before we proceed with the RPS, we point out an
analogy to the Ising model. It can be verified that the two-

particle version of our process �i.e., AB→
1

AA, BA→
1

BB and

A→
�

B→
�

A; �l and �r obviously cannot be distinguished here�
has been proposed by Glauber as a way to study the dynamic
effects of the one-dimensional Ising model, with, say, A cor-
responding to “spin up” and B corresponding to “spin down”
�13,14�. After expressing the energy in terms of the nearest-
neighbor sum E��s��=−J�sksl, where sk is 1 for spin up and
−1 for spin down and J is a coupling constant, the tempera-
ture T is related to the mutation rate � by � / �1+��=1
−tanh�2kJ /T�. � is small in the low temperature regime and
large in the high-temperature regime. Thus, we may think of
the mutation rates �l and �r for the RPS as temperaturelike
parameters. At fast mutation rates, or high temperature, the
system becomes rather uncorrelated, and therefore mean-
field �3� makes for a good approximation.

Let us now try to comprehend the RPS for very low mu-
tation rates �=�l+�r. Comparison with the one-dimensional
Ising model suggests that at �=0, corresponding to zero
temperature, the system displays a critical behavior with the
correlation length going to infinity. In the following we show
that this is indeed corroborated by scaling arguments as well
as stochastic simulations.

First, let us restrict ourselves to the regime �r=0 and
�l�1. The interface density is low and therefore the single
most probable mutation occurs on two adjacent vacant

sites ��→
�l

LR. In the particle picture this is achieved

by, e.g., AAA→
�l

ACA. Notice that the mutation induces
a predator in a—typically large—domain of prey, where it
can spread subsequently. Hence the incidence has strong im-
pact on the system. In the dual picture this is expressed in the
fact that the pair LR, unlike RL, can separate, e.g.,

� � � � →
�l

� LR � →
1

L � R � →
1

L � � R → ¯ .

�4�

Consider what happens next to the, say, R interface. It moves
to the right from site to site with rate 1, until it meets and
reacts with some other interface, e.g.,

R � � L→
1

� R � L→
1

� RL � →
2

� � � � . �5�

It is crucial to note that diffusion becomes negligible when
the particles are far apart since their directional motion is
described by a Poisson process, whose mean-square dis-
placement ��t�=�t becomes small relative to the average
distance 	x�t�
= t it has traveled. Therefore, in our regime
one should think of the particles as moving ballistically. For
our scaling argument, we partition the lattice in cells of size
b and consider the dynamics from this coarse-grained point
of view. Empty cells become the new vacancy � cells that
contain exactly one interface the new R or L, respectively.
Since the lattice is supposed to be sparsely populated, we
disregard the unlikely case of cells containing more than one
interface. A mutation �l now occurs with b-fold rate since
the whole cell is at disposal. We rescale time by a factor of b
so that the velocity of the �ballistic� interfaces is unchanged.
This implies a rescaled rate �l�=b2�l—one factor b for res-
caling space and another one for rescaling time. The density
evidently becomes b-fold, n��l��=bn��l� and thus n=A�l

1/2

for an infinite lattice. This result is indeed validated by our
numerical simulations �Fig. 2�.

At this point, we remark that for the symmetric case
rA ,rB ,rC=1 the stationary state can be solved exactly, lead-

A B Ct=0

t=1

t=2

t=3

t=4

t=5

RR R L

L

L

L

LL

L

RRR

R R

R

R

R

FIG. 1. �Color online� Illustration of the one-dimensional rock-
paper-scissors game with mutations and the passing to its dual de-
scription. The configuration of the lattice is given at subsequent
points in time, resulting in a two-dimensional space-time plot. A
mutation C→B occurs somewhere between t=2 and t=3. The dual
picture is characterized by interfaces moving left �L� or right �R�.
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FIG. 2. �Color online� When rA ,rB ,rC=1, the rescaled interface
density n��l ,�r=0� /��l approaches the law �2− �3 /4�23/4�l

1/4

�solid red line� as �l becomes small. For large mutation rates the
data are described well by the mean-field curve �Eq. �3�� �dotted
blue line�. Notice that for �l�1 we have plotted the density n
without rescaling.
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ing to A=�2 �15�. Here we only illustrate the underlying
physics by the following heuristic argument. For symmetric
rates, reactions of the type RR→ �L are negligible because
it takes an interface much longer to catch up with an inter-
face of the same kind than to crash into a different kind of
interface, which it can meet halfway, as it were. Hence
P�RR�=0, where P�RR� stands for the probability of finding
two interfaces next to each other. We suppose that otherwise
the system is uncorrelated, in particular P�RL�= P�R�P�L�.
Then, up to terms of the order �l and due to the symmetry
between R and L one has the master equation

Ṗ�R� � �lP�� �� − 2P�RL� � �l − 2�P�R��2. �6�

Solving for the stationary value yields A=�2.
To motivate the first correction to this result, notice that

two interfaces of the same kind move diffusively relative to
each other, with diffusion constant 1. The diffusional length
scale associated to the average survival time 1 /n is 1 /�n
�1 /n �for small mutation rates�. The probability Pn�t� that
the pair of R interfaces is intact after a time t will just be the
probability that they have not yet interacted diffusively,
2

��
�0

x/2�tdse−s2
�see, e.g., �16��, times the probability that the

right R has not yet crashed into an L, which is given by an
exponential distribution exp�−nt�. In the last equation we
assume that the system is uncorrelated so that in every time
step the right R crashes into an L with probability n. The
probability that an R is created at a distance x to another R
is n /2 when x�1 /n. Upon integrating over x and t one finds
that the probability of an R interacting diffusively with an
R on its right is �n /2. If we simply subtract these
“failed attempts” of creating it from the mutation rate
�l→�l�1−�n /2�, we obtain �l�1−n /2� ·1 /n=n /2 or n

��2�l�1−�n /4���2�l− �23/4 /4��l
3/4. More rigorous analy-

sis �17�, taking into account the difference in the time of
survival of the left Rs, with and without diffusion, yields an
even larger correction

n � �2�l −
3

4
23/4�l

3/4. �7�

The increased amplitude may appear counterintuitive, but
since the left Rs are shielded by the right Rs their average
time of survival in the ballistic case is quite large and so can
be the difference when diffusion is turned on. Our result is in
agreement with the numerics �Fig. 2�.

Let us proceed to discuss the case �l=0 and �r�1. Since
the system is coarse grained, the major part of the mutations
will result in one prey in the middle of large domains of

predators. For instance, AAA→
�r

ABA. Evidently, this configu-
ration is rather unstable and one expects that in most cases
the cyclic dominance reactions reestablish the original state,
that is, B turns to A. In the dual picture, this translates into
the creation of a pair RL, which in most cases annihilates
quickly,

� � →
�r

RL→
2

� � . �8�

Owing to the longevity of its products, one also needs to take
into account that a second mutation may occur,

� � →
�r

RL→
�r

LR , �9�

effectively leading to �� →
�r

2/2
LR. Just as above a pair LR is

produced, but this time the reaction is mediated by two �r
mutations instead of one �l mutation. In the particle picture
this means that the prey B in a domain of A may be turned
into the predator C by a second mutation. The former �Eq.
�8�� implies a contribution of �r to the interface density. The
latter �Eq. �9�� leads to the same dynamics as in the �l case
and to another term of magnitude �2��r

2 /2�=�r, i.e., to low-
est order n=2�r.

For the leading correction, in addition to reactions of the
type RR→ �L, one needs to treat instances of mutations
when there exactly one interface around, say,

R � →
�r

LL , �10�

e.g., ABB→
�r

ACB. Similar reactions can occur, when there is
a mutation nearby an interface, for instance.

R � � � →
�r

R � RL→
1

� RRL→
1

� � LL . �11�

An analysis analogous to the pure �l case yields an overall
positive contribution �15�,

n � 2�r +
3

2
�r

3/2. �12�

Figure 3 confirms this behavior. Again mean field is an
excellent approximation for large mutation rates. As muta-
tions become less frequent, Eq. �3� provides a gross over-
estimate of the interface density because the approach cannot
keep track of the large amount of pairs of RL that annihilate
quickly. This can be amended by a generalized mean-field
approach �18�, where the master equation for clusters of N
adjacent sites is considered. A truncation in the hierarchy of
probability distributions yields a closed set of differential
equations, which can be solved numerically. For clusters
of size 2 one already retrieves the right scaling law n�r
��r�1�.

Again, we explain how a scaling analysis helps us under-
stand the behavior of the density n��r ,�l=0�. This will also
extend our results to more general processes. We partition
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FIG. 3. �Color online� For small �r, the rescaled density con-
verges to n��l=0,�r� /�r=2+3 /2��r �solid red line� when
rA ,rB ,rC=1. The mean-field result �dotted dark blue line� and the
generalized mean-field result for clusters containing two sites �dot-
ted light blue line� are also shown.
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the lattice in cells of size b. Then the probability for a cell to
contain a pair RL, which are created and destroyed according
to reaction �8�, becomes b�r while the rate to create a pair
LR out of RL �Eq. �9�� evidently remains �r. We rescale time
by a factor b so that the velocity of R and L, measured in the
average number of cells they traverse in unit time, stays one.
Now the right-hand side of reaction �9� occurs at a rate b�r,
while the probability of finding a pair LR remains b�r. This
implies �r�=b�r ,n��r��=bn, whereby we conclude n=B�r.

Up to now we have considered symmetric rates, where
reactions governed by diffusion give rise to the correction
terms in Eqs. �7� and �12�, which do not fit in the scaling.
Now consider what happens if rA ,rB ,rC are not identical, for
instance, if rA�rB=rC. Suppose the pair RR stands for CAB.
In this case the two Rs no longer move diffusively relative to
each other but rather the right R drifts away and can escape
the left one, resembling a ballistic motion of the right R away
from the left one with average relative velocity rA−rB. Here
we can apply the above scaling argument and we expect a
contribution to the interface density that obeys the scaling
n�r as confirmed in Fig. 4. This plot also indicates that our
findings can be generalized to �l�0 and �r�0, where in
analogy to our above arguments one derives n��l ,�r�
=��l��

�r

��l
� for some scaling function �. We remark that

exact calculations yield ��0� →
rA→	

1. Figure 4 shows that even
for rA=5 this is a good approximation.

In conclusion, competition between coarsening dynamics
and mutations in our model leads to a reactive stationary
state characterized by an interplay between equilibrium and

nonequilibrium processes—indeed one can pinpoint exactly
which reactions take the system away from equilibrium. It
was crucial to discriminate two types of mutations, �l and
�r, the effect of the latter being negligible when the two rates
are comparable and small. Both for the high and for the low
mutation rate regimes we have retrieved asymptotically exact
results which we expect to be quite robust to a wide rage of
variations, e.g., relaxing the constraints of perfect symmetry.
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