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Entropy serves as a central observable in equilibrium thermodynamics. However, many biological and

ecological systems operate far from thermal equilibrium. Here we show that entropy production can

characterize the behavior of such nonequilibrium systems. To this end we calculate the entropy production

for a population model that displays nonequilibrium behavior resulting from cyclic competition. At a

critical point the dynamics exhibits a transition from large, limit-cycle-like oscillations to small, erratic

oscillations. We show that the entropy production peaks very close to the critical point and tends to zero

upon deviating from it. We further provide analytical methods for computing the entropy production

which agree excellently with numerical simulations.
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The study of complex systems with a large number of
interacting particles requires global observables that char-
acterize their behavior. Modern statistical mechanics has
successfully identified, interpreted, and applied such ob-
servables for equilibrium systems. One of these observ-
ables is the entropy which allows for predictions of a
system’s behavior through the second law of thermody-
namics—an isolated system’s entropy cannot decrease.
Identifying similar principles for nonequilibrium systems,
however, proves elusive. Neither a characteristic global
observable nor a universal principle has been identified in
a general way. While also in nonequilibrium the entropy
production has been proposed as a useful observable [1,2],
and different principles governing its behavior have been
suggested [3,4], problems arise from different employed
definitions of entropy and approaches to nonequilibrium
dynamics [2,5,6].

In this Letter we demonstrate that entropy production
can successfully characterize ecological systems with cy-
clic competition. Ecological systems display a wide variety
of nonlinear and nonequilibrium behavior. Random inter-
actions between individuals and the finiteness of the popu-
lation lead to intrinsic stochasticity. Nonequilibrium results
when interactions between individuals of different species
include cyclic dependencies where a species A1 benefits
from and suppresses a species A2, while A2 benefits from
and suppresses a species A3, and so on, with some species
Ak of the resulting chain benefiting from and suppressing
species A1. Such cycles can lead to erratic or limit-cycle
oscillations in the steady state of the population dynamics
[7–16]. Experimental observations of cyclic dynamics and
corresponding oscillations have, amongst others, been
documented for mating behavior of lizards in costal
California [17] and in microbial laboratory communities
[18].

The dynamics of ecological systems can be conveniently
described as a Markovian stochastic process through a
master equation,

@tPiðtÞ ¼
X
j

½!j
iPjðtÞ �!i

jPiðtÞ�; (1)

in which PiðtÞ denotes the probability of finding the system
in a certain state i at time t and !j

i is the transition
probability from state j to state i. The associated mean
entropy production _S of the system follows as

_S ¼ 1

2

X
i;j

½!j
iPjðtÞ �!i

jPiðtÞ� ln
�
!j

iPjðtÞ
!i

jPiðtÞ
�
: (2)

Equation (2) can be obtained through considering the
difference between forward and backward entropy per
unit time of the stochastic process, Eq. (1) [19]. Equa-
tion (2) follows also as the temporal derivative of the
system’s Gibbs entropy together with a term describing
the total increase of thermodynamic entropy in the reser-
voirs to which the system is coupled [20]. For steady states
defined by @tPiðtÞ ¼ 0, as we consider in this Letter, the
entropy production simplifies to

_S ¼ 1

2

X
i;j

½!j
iPj �!i

jPi� ln
�
!j

i

!i
j

�
: (3)

It follows from Eq. (2) that the entropy production
vanishes if and only if the system obeys detailed balance,

!j
iPj ¼ !i

jPi. Indeed, detailed balance represents the no-

tion of thermodynamic equilibrium in the framework of the
master equation. Cyclic population dynamics violates de-
tailed balance; the computation and discussion of the as-
sociated entropy production is the scope of this Letter.
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Consider a simple model for cyclic population dynamics
of three species A, B, and C. Interactions are formulated as
chemical reactions:

AB ���!k AA; A !m B;

BC ���!k BB; B !m C;

CA ���!k CC; C !m A:

(4)

The reactions on the left describe cyclic competition: A
outperforms B but is beaten by C, and C is taken over by B
in turn. The reactions on the right correspond to sponta-
neous mutations between the three species.

The population model defined by the reactions (4) ex-
hibits a critical mutation rate that, in the resulting nonequi-
librium steady state, delineates large oscillations in the
species densities from only small ones. Let us introduce
this critical mutation rate first. The reactions (4) conserve
the total numberN of interacting individuals. The densities
a, b, and c of species A, B, C therefore sum up to one, aþ
bþ c ¼ 1, and the population’s state space is the simplex
S3 (see Fig. 1). Numerical simulations indicate that small
values of the mutation rate m lead to large oscillations
between the densities of the three species; the probability
distribution is highest close to the corners of the simplex
[Fig. 1(a)]. Large values of m, on the contrary, lead to an
approximately Gaussian probability distribution around
the simplex center [Fig. 1(b)]. Erratic oscillations occur
at small amplitudes [9].

The system’s behavior can be analytically described by
an approximate Fokker-Planck equation. A systematic ex-
pansion in the system size N yields an equation for the
temporal evolution of the probability distribution Pðs; tÞ of
the densities s ¼ ða; bÞ at time t:

@tPðs; tÞ ¼ �@i½�iðsÞPðs; tÞ� þ 1
2@i@j½�ijðsÞPðs; tÞ�; (5)

in which the indices i, j run from 1 to 2; the summation

convention implies summation over them. The density c
follows as c ¼ 1� a� b. The coefficients read

�iðsÞ ¼ ½mð1� 3siÞ þ ksiðsiþ1 � siþ2Þ�;
�iiðsÞ ¼ N�1½mð1þ siÞ þ ksiðsiþ1 þ siþ2Þ�;
�ijðsÞ ¼ �N�1½mðsi þ sjÞ þ ksisj� for i � j;

(6)

where the indices are understood as modulus 3 and s3 ¼ c.
The terms containing � describe the deterministic part of
the temporal evolution. In the absence of fluctuations, the
reactions for cyclic dominance lead to neutrally stable
oscillations around the internal fixed point s� ¼
ð1=3; 1=3; 1=3Þ, while the spontaneous mutations render
the internal fixed point stable. Demographic fluctuations

are, for large system sizes N, inversely proportional to
ffiffiffiffi
N
p

and enter the Fokker-Planck equation (5) through the terms
containing �. They induce a stochastic drift away from the
internal fixed point towards the boundaries of the phase
space. The Fokker-Planck equation (5) shows that the
competition between the deterministic and the stochastic
effects leads, at a critical mutation rate mc ¼ k=ð2NÞ, to a
uniform probability distribution. Certain deviations from
the uniform distribution occur near the phase space
boundaries where the discreteness of the phase space be-
comes relevant and the continuous formulation through the
Fokker-Planck equation does not hold. For a small muta-
tion rate, m<mc, fluctuations dominate and drive the
system towards the boundary. In the absence of mutations
the corner states are absorbing and the system goes extinct
[21]. An arbitrary small mutation rate, however, leads to
sustained species coexistence and oscillations. In the op-
posite case, when m>mc, the deterministic dynamics
centers the probability distribution around the internal
fixed point.
The cyclic population dynamics yields a nonequilibrium

steady state that is characterized by oscillations, large or
small, around the internal fixed point. What is the resulting
entropy production and how does it relate to the regimes of
small, critical, and large mutation rates outlined above?
To tackle this question we have carried out extensive

numerical simulations of the stochastic system employing
the Gillespie algorithm [22]. Throughout our simulations
we have considered k ¼ 1 which defines the time scale.
Numerical results from computer simulations of the sto-
chastic system show that the entropy production peaks at a
certain value mmax of the mutation rate (Fig. 2). The value
mmax approximately equals the critical mutation rate,
mmax � mc (Fig. 2 inset). Small deviations from this be-
havior arise because the probability distribution at the
critical mutation rate is not uniform near the boundaries
as mentioned above.
Analytical understanding of the entropy production in

the regimes of small, critical, and large mutation rates is
feasible through the Fokker-Planck equation (5). To this
end we employ a continuous version of the entropy pro-
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FIG. 1 (color online). Probability distributions (k ¼ 1, N ¼
100). (a) For a mutation rate m ¼ 0:003 smaller than mc ¼
k=ð2NÞ the probability distribution is concentrated near the
edges and particularly near the corners of the phase space.
(b) A mutation rate m ¼ 0:1 larger than mc leads to a
Gaussian distribution around the center.
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duction (3),

_S ¼ 1

2

Z
dr

Z
ds½!r

sPðrÞ �!s
rPðsÞ� ln

�
!r

s

!s
r

�
; (7)

where integration is over all states r, s of the phase space.
The entropy production in the form of Eq. (7) can readily

be evaluated at the critical mutation rate mc. The proba-
bility distribution is uniform according to the Fokker-
Planck equation (5); we obtain

_Sm¼mc
¼ 3

144
kN½12 lnðNÞ � 13þ 6 lnð4Þ�: (8)

For moderate and large N the term N lnðNÞ on the right-
hand side dominates the entropy production. Stochastic
simulations confirm this behavior (Fig. 2).

In the regime of large mutation rates, m>mc, we need
to calculate the probability density in the steady state to
compute the entropy production. We obtain the probability
density by using polar coordinates (r, �) centered at the
internal fixed point. We then simplify the Fokker-Planck
equation (5) through a van Kampen approximation for the
coefficients (6) in which the coefficients are approximated
by their value at the internal fixed point. The resulting
Fokker-Planck equation is then solved by the Gaussian
distribution

Pðr; ’Þ ¼ 1

2��2
exp

��r2
2�2

�
; (9)

where � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðkþ 6mÞ=36mN
p

. The entropy production
follows from Eq. (7) where the integral is evaluated by
setting the upper boundary of the integral to 1 and an
average over the angular dependence is taken:

_Sm�mc
¼ kN

3
ln

�
k

3m
þ 1

�
: (10)

This result agrees excellently with numerical simulations
[Fig. 3(b)]. The entropy production (10) depends linearly
on the system size N. This behavior arises because the
typical area in phase space explored by the dynamics is
proportional to �2 � 1=N and thus contains N2�2 � N
states. The continuity approximation employed in the
Fokker-Planck equation (5) holds for arbitrary large m,
since the width� of the probability distribution (9) remains
finite as m! 1.
Expanding (10) for large values ofm results in _Sm�mc

¼
k2N=ð9mÞ. The entropy production vanishes as m=k in-
creases. Indeed, only the cyclic dynamics at rate k under-
lies the nonequilibrium behavior and therefore entropy
production, while the mutations at rate m obey detailed
balance.
When the mutation rate is small, m� mc, the probabil-

ity distribution is concentrated near the boundaries of the
phase space [Fig. 1(a)]. The dynamics occurs predomi-
nantly along the boundary and can therefore be approxi-
mately described by considering only the boundary states.
Because of the threefold symmetry it suffices to regard
only one edge of the simplex with periodic boundary
conditions. The concentration x of one of the three species
increases along this edge from 0 to 1 such that the cyclic
dynamics drives the system to x ¼ 1. The deterministic
part of the dynamics is given by

@tx ¼ mð1� 2xÞ � kðx� x2Þ (11)

and features a fixed point at x� ¼ ½ð2mþ kÞ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2 þ k2
p

�=ð2kÞ. In the range ofm� mc, this fixed point
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FIG. 2 (color online). Entropy production in the steady state
for different system sizes (h, N ¼ 2; j, N ¼ 5; �, N ¼ 10; d,
N ¼ 20; 4, N ¼ 50; m, N ¼ 100; 5, N ¼ 200; ., N ¼ 400).
The entropy production vanishes for very high and very low
mutation rates and exhibits a maximum at an intermediate value
mmax. The value mmax is near the critical mutation rate as shown
in the inset where the black line indicates mc þ 0:001, and red
circles represent data obtained from simulations.
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FIG. 3 (color online). Entropy production in the limiting cases
m� mc (a) and m� mc (b). Analytical results (black lines)
agree excellently with simulations (�, N ¼ 30;4, N ¼ 100;h,
N ¼ 200; e, N ¼ 400). The data confirm that the entropy
production is proportional to the squared system size N2 for
small mutation rates and proportional to N for large mutation
rates. The simulation results further confirm that the entropy
production decays as m for m! 0 and as 1=m for m! 1.
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is closer to 1 than the distance 1=N between two discrete
states. We conclude that fluctuations will cause the system
to exhibit a constant circular current in the steady state.
The probability distribution PðxÞ for x 2 ½1N ; 1� 1

N� can
therefore be obtained as a solution to the Fokker-Planck
equation 0 ¼ �@xf½mð1� 2xÞ � kðx� x2Þ�PðxÞg where
fluctuations have been ignored:

PðxÞ ¼N
1

m� 2mx� kxþ kx2
; (12)

with a normalization coefficient N . To determine the
probability P0 of a corner state, which turns out to be finite,
fluctuations have to be included. P0 can be obtained using
the master equation and the values of Pðx ¼ 1=NÞ and
Pðx ¼ 1� 1=NÞ. The normalization N follows from

3

�Z 1�ð1=NÞ

1=N
PðxÞdxþ 2

N
P0

�
¼ 1: (13)

The factor 3 arises because the phase space simplex pos-
sesses three edges. For moderate and large system sizes N
we obtain P0 ¼N =ð2mÞ which dominates the left-hand
side of Eq. (13), such that N ¼ Nm=3. The resulting
probability density can again be inserted into (7) to provide
an analytical result for the entropy production in the regime
m� k

2N� 1:

_Sm�mc
¼ mN2 lnðm=kÞ; (14)

in perfect agreement with simulations [Fig. 3(a)]. The
entropy production for small mutation rates is proportional
to the squared system size. Decreasing m lowers the en-
tropy production in proportion because mutations are the
process that restarts the cyclic dynamics once a corner state
has been reached. Mutations therefore limit the dynamics
to a time scale proportional to m.

In conclusion, we have examined the global entropy
production in the steady state of a cyclic population model.
At a critical mutation rate the system undergoes a transition
from large oscillations along the phase space’s boundary to
small erratic oscillations around an internal fixed point.
The entropy production peaks very near the critical muta-
tion rate and decreases to zero away from it. We believe
that, in a similar manner, the entropy production can yield
valuable information about the nonequilibrium steady state
of other stochastic systems. Indeed, in a recently studied
model, because of a nonfixed system size and the exten-
sivity of the entropy production, the slope of the entropy
production peaks near a critical point [23]. Within our
approach of a fixed system size we have investigated a
stochastic system that displays a supercritical Hopf bifur-
cation. We found that the entropy production predicts the
scale of the critical mutation rate: it peaks near the Hopf
bifurcation, at a mutation rate of about 1=4 of the critical
one [24]. Understanding the certain discrepancy between
the maximum and the critical value may open a route to a
more general understanding of the role of entropy produc-

tion. Because of the universality of the Hopf bifurcation we
conclude that our approach is valid for a wide class of
nonequilibrium systems, namely, those that exhibit a tran-
sition from small, erratic oscillations to limit-cycle-like
ones, including systems with spatial degrees of freedom
[25].
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[11] G. Szabó and G. Fath, Phys. Rep. 446, 97 (2007).
[12] T. Reichenbach, M. Mobilia, and E. Frey, Nature (London)

448, 1046 (2007).
[13] J. C. Claussen and A. Traulsen, Phys. Rev. Lett. 100,

058104 (2008).
[14] J. Cremer, T. Reichenbach, and E. Frey, Eur. Phys. J. B 63,

373 (2008).
[15] R. P. Boland, T. Galla, and A. J. McKane, Phys. Rev. E 79,

051131 (2009).
[16] T. Galla, Phys. Rev. Lett. 103, 198702 (2009).
[17] B. Sinervo and C.M. Lively, Nature (London) 380, 240

(1996).
[18] B. Kerr et al., Nature (London) 418, 171 (2002).
[19] P. Gaspard, J. Stat. Phys. 117, 599 (2004).
[20] J. Schnakenberg, Rev. Mod. Phys. 48, 571 (1976).
[21] M. Berr, T. Reichenbach, M. Schottenloher, and E. Frey,

Phys. Rev. Lett. 102, 048102 (2009).
[22] D. T. Gillespie, J. Phys. Chem. 81, 2340 (1977).
[23] P. Gaspard, J. Chem. Phys. 120, 8898 (2004).
[24] See supplementary material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.104.218102 for a de-
scription of the entropy production of a nonequilibrium
stochastic system that displays a Hopf bifurcation.

[25] G. Szabo, A. Szolnoki, and R. Izsak, J. Phys. A 37, 2599
(2004).

PRL 104, 218102 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending
28 MAY 2010

218102-4

http://dx.doi.org/10.1007/BF01325982
http://dx.doi.org/10.1146/annurev.pc.31.100180.003051
http://dx.doi.org/10.1016/j.physd.2004.01.008
http://dx.doi.org/10.1016/j.physd.2004.01.008
http://dx.doi.org/10.1103/PhysRevLett.95.040602
http://dx.doi.org/10.1137/0129022
http://dx.doi.org/10.1137/0129022
http://dx.doi.org/10.1103/PhysRevE.54.6186
http://dx.doi.org/10.1103/PhysRevE.54.6186
http://dx.doi.org/10.1103/PhysRevLett.94.218102
http://dx.doi.org/10.1103/PhysRevLett.94.218102
http://dx.doi.org/10.1103/PhysRevE.74.011901
http://dx.doi.org/10.1103/PhysRevE.74.011901
http://dx.doi.org/10.1016/j.physrep.2007.04.004
http://dx.doi.org/10.1038/nature06095
http://dx.doi.org/10.1038/nature06095
http://dx.doi.org/10.1103/PhysRevLett.100.058104
http://dx.doi.org/10.1103/PhysRevLett.100.058104
http://dx.doi.org/10.1140/epjb/e2008-00036-x
http://dx.doi.org/10.1140/epjb/e2008-00036-x
http://dx.doi.org/10.1103/PhysRevE.79.051131
http://dx.doi.org/10.1103/PhysRevE.79.051131
http://dx.doi.org/10.1103/PhysRevLett.103.198702
http://dx.doi.org/10.1038/380240a0
http://dx.doi.org/10.1038/380240a0
http://dx.doi.org/10.1038/nature00823
http://dx.doi.org/10.1007/s10955-004-3455-1
http://dx.doi.org/10.1103/RevModPhys.48.571
http://dx.doi.org/10.1103/PhysRevLett.102.048102
http://dx.doi.org/10.1021/j100540a008
http://dx.doi.org/10.1063/1.1688758
http://dx.doi.org/10.1088/0305-4470/37/7/006
http://dx.doi.org/10.1088/0305-4470/37/7/006


1

Entropy production of cyclic population dynamics

Benjamin Andrae, Jonas Cremer, Tobias Reichenbach, and Erwin Frey

Supplementary EPAPS Document: Entropy production and Hopf
bifurcation

Entropy production can characterize the behavior of a broad class of nonequilibrium systems. In this Supplemen-
tary Material we underpin this point through consideration of a nonequilibrium stochastic system that exhibitis a
Hopf bifurcation. We show that the entropy production peaks in the vicinity of the bifurcation, where the behavior
changes from noisy, erratic oscillations to larger limit-cycle oscillations. We conclude that the entropy production gen-
erally characterizes the behavior of systems with limit cycles that fall into the universality class of the Hopf bifurcation.

Consider a stochastic system with species A,B,C and empty sites � that obey the following reactions:

AB
k−→ A� , A� l−→ AA , A

m←→ B ,

BC
k−→ B� , B� l−→ BB , B

m←→ C ,

CA
k−→ C� , C� l−→ CC , C

m←→ A . (15)

The reactions with rates k and l can represent cyclic dominance of three species [11]. The corresponding deterministic
rate equations have first been proposed and analyzed by R. M. May and W. J. Leonard [16]. The reactions with rate
m describe spontaneous mutations between the three species.

The deterministic equations for the temporal evolution of the concentrations a, b, c of species A,B,C follow from
the reactions (15) as

∂ta = a[l(1− ρ)− kc] +m(b+ c− 2a) ,
∂tb = b[l(1− ρ)− ka] +m(a+ c− 2b) ,
∂tc = c[l(1− ρ)− kb] +m(a+ b− 2c) . (16)

Linear stability analysis reveals the existence of a reactive fixed point at (a∗, b∗, c∗) = l/(3l + k) · (1, 1, 1). This
fixed point changes its stability at a critical mutation rate mc = kl/6/(3l + k) from a stable spiral point (above mc)
to an unstable spiral point (below mc). Further analysis that takes the leading nonlinearities into account reveals
that a supercritical Hopf bifurcation arises at mc. Above the critical mutation rate, for m > mc, the stochastic
system performs noisy erratic oscillations around the reactive fixed point. The steady-state probability distribution is

(a) m < mc (b) m = mc (c) m > mc
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FIG. 1: (color online) Steady-state probability distributions for k = l = 1, N = 100, projected on the plane spanned by
(a, b, c) = (1, 0, 0), (0, 1, 0), (0, 0, 1). (a) For a mutation rate m = 0.022 smaller than mc ≈ 0.042 the probability distribution is
concentrated along the limit cycle. (b) At the critical mutation rate mc a broad probability distribution centered around the
reactive fixed point arises. (c) A mutation rate m = 0.062 larger than mc leads to a narrow, gaussian distribution around the
reactive fixed point.
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FIG. 2: (color online) Entropy production in the steady state. Results for different system sizes (�, N = 100; �, N = 200; ◦,
N = 400; •, N = 800) show that the entropy production peaks at a mutation rate mmax ≈ 0.01 near the critical mutation rate
mc ≈ 0.042. The entropy production vanishes both for smaller and higher mutation rates.

approximately gaussian around the reactive fixed point, see Fig. 1 (c) for a projection of the system’s steady state onto
the simplex spanned by the densities a, b, c. Below the critical mutation rate, for m < mc, a stable limit cycle forms.
The stochastic dynamics leads to noisy trajectories along the limit cycle, see Fig. 1 (a). At the critical mutation rate,
as the linear terms in the deterministic equations vanish, a relatively broad, non-gaussian probability distribution
centered at the reactive fixed point arises [Fig. 1 (b)]. This behavior is similar to the one recently reported in Ref. [13]
where higher order nonlinearities render a spiral point stable while the linear terms vanish.

We have performed extensive stochastic simulations of the stochastic system defined by the reactions (15). In these
simulations we have left the rates k, l constant at k = l = 1, defining the time-scale, and systematically varied the
mutation rate m as well as the system size N . In principle, a divergence in the entropy production can arise when
the system reaches the boundary of the phase space. However, because the probability of these boundary states is
exponentially suppressed, this effect can be ignored.

For all considered system sizes the resulting entropy production exhibits a maximum near the critical mutation
rate mc, see Fig. 2. For system sizes above about N = 200 the maximum of the entropy production arises at a value
mmax ≈ 0.01, about 1/4 of the value of the critical mutation rate mc ≈ 0.042. For mutation rates much smaller and
much larger than mmax the entropy production tends to zero. The system’s behavior therefore resembles the one
reported in the main part of this Letter, underpinning the general usefulness of entropy production in characterizing
nonequilibrium steady states. Understanding the certain discrepancy of mmax and mc will yield further insight into
the relation between entropy production and critical nonequilibrium behavior.


