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Abstract. Frequency discrimination is a fundamental task of the auditory
system. The mammalian inner ear, or cochlea, provides a place code in which
different frequencies are detected at different spatial locations. However, a
temporal code based on spike timing is also available: action potentials evoked in
an auditory-nerve fiber by a low-frequency tone occur at a preferred phase of the
stimulus—they exhibit phase locking—and thus provide temporal information
about the tone’s frequency. Humans employ this temporal information for
discrimination of low frequencies. How might such temporal information be
read out in the brain? Here we employ statistical and numerical methods
to demonstrate that recurrent random neural networks in which connections
between neurons introduce characteristic time delays, and in which neurons
require temporally coinciding inputs for spike initiation, can perform sharp
frequency discrimination when stimulated with phase-locked inputs. Although
the frequency resolution achieved by such networks is limited by the noise
in phase locking, the resolution for realistic values reaches the tiny frequency
difference of 0.2% that has been measured in humans.
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1. Introduction

A sound impinging on the eardrum elicits a wave of displacement of the basilar membrane
within the cochlea [1, 2]. Mechanosensitive hair cells on the basilar membrane transduce the
membrane’s vibration into electrical signals that are transmitted to the associated auditory-nerve
fibers [3, 4]. Through position-dependent resonance along the basilar membrane the cochlea
establishes a place code for frequencies. Stimulation at a high frequency evokes a traveling
wave that peaks near the organ’s base. The waves elicited by lower frequencies culminate at
more apical positions.

A temporal code may, however, supplement or even supersede the place code. In response
to a pure tone at a frequency below about 300 Hz, an auditory-nerve fiber fires action potentials
at every cycle of stimulation and at a fixed phase [3, 5]. Above 300 Hz the axon starts to skip
cycles, but action potentials still occur at a preferred phase of the stimulus. The quality of
this phase locking decays between 1 kHz and 4 kHz, however, and phase locking is lost for
still higher frequencies. Phase locking below 4 kHz is sharpened in the auditory brainstem by
specialized neurons such as spherical bushy cells that receive input from multiple auditory-
nerve fibers [6, 7]. These cells can fire action potentials at every cycle of stimulation up to
800 Hz (figure 1). Temporal information about the stimulus frequency is therefore greatest
for frequencies below 800 Hz, declines from 800 Hz to 4 kHz, and vanishes for still greater
frequencies. In some species, such as the barn owl, phase locking can continue up to 10 kHz [8].

Phase locking is employed for sound localization in the horizontal plane [9, 10]. A sound
coming from a subject’s left, for example, reaches the left ear first and hence produces a
phase delay in the stimulus at the right ear compared to that at the left. Auditory-nerve fibers
preserve this phase difference, which is subsequently read out by binaurally sensitive neurons
through delay and coincidence detection. A temporal delay generally results when one neuron
signals another: the signal propagates along the axon of the transmitting neuron and along the
dendrites of the receiving cell, producing delays of up to 20 ms with only a few microseconds
of jitter [11–13]. Coincidence detection occurs when two or more synchronous incoming spikes
are required for a neuron to fire: the signals must arrive at the nerve cell’s soma within a certain
time window τ , comparable to the membrane’s time constant, in order for their effects to add
and initiate an action potential.

Phase locking can also provide information about the frequency of a pure tone, for the
duration between two successive neural spikes is on average the signal’s period or a multiple
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Figure 1. Schematic illustrations of phase locking. A stimulus at a frequency
below 800 Hz elicits a series of action potentials in, for example, spherical bushy
cells of the auditory brain stem; spikes occur at every cycle of stimulation and
at a preferred phase. Because an action potential lasts about 1 ms, those neurons
no longer fire spikes at every cycle when the signal frequency exceeds 800 Hz.
Spikes still occur, however, at a preferred phase. Above 4 kHz the spikes’ phases
are random.

thereof. Evidence for the usage of this information in the brain comes from psychoaoustic
studies showing that human frequency discrimination is superior for the lower frequencies at
which phase locking is available and that discrimination of these frequencies worsens when the
phase information is perturbed [14–18].

It remains unclear how the temporal information on frequency is read out in the brain.
The usage of delay and coincidence detection has been proposed, but the exact mechanism has
not been specified and the resulting frequency resolution has not been determined [19]. Other
studies have advanced mathematical schemes for determining a signal’s frequency from phase
locking, the neural implementation of which remains unclear [20, 21]. Here we study how a
random recurrent neural network with delay and coincidence detection can encode frequency
in its activity pattern when stimulated with phase-locked, cycle-by-cycle input. We develop
a statistical description of these firing patterns and show that they provide precise frequency
information.

2. Results

Denote by T the period and by L the duration in cycles of a signal such that the
phase-locked, cycle-by-cycle external spikes arrive at the network neurons around times
0, T, 2 T, 3 T, . . . , (L − 1)T (figure 2). Assume that the first external spike triggers an
action potential at each neuron; because of adaption, two coincident spikes are needed for the
generation of subsequent spikes. If a neuron i projects to another neuron j then its first spike
arrives there at a later time ti j that represents the delay between the cells. If that time differs
no more than the small amount τ from the time T at which the second external spike arrives at
neuron j , the two spikes act in concert to elicit an action potential; otherwise neuron j remains
silent. If active, neuron j may trigger spikes in other neurons, specifically those for which the
time delay from neuron j also matches the signal period. Sustained network activity results
when the connectivity C between neurons—the average number of internal connections that a
neuron receives—exceeds a certain value (figure 3; appendices A and B).
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Figure 2. Schematic diagrams of a neural network with delay and coincidence
detection. (a) Each neuron (light gray) can receive phase-locked inputs from a
preceding neuron through external nerve fibers (orange). The network neurons
are randomly connected (light blue) with the indicated characteristic delays in
signal propagation. To fire an action potential, a neuron requires two temporally
coincident spikes, such as one from an external and one from an internal
source. (b) When a periodic signal arrives through the external nerve fibers
(red), the internal connections whose signal delay is approximately matched to
the signal period induce spikes in their target neurons, resulting in a pattern
of active internal connections (dark blue) and active neurons (dark gray).
(c) A different signal period evokes a distinct pattern of active connections and
active neurons.

How can we quantify this network’s pattern of activity? Let the network comprise N
neurons and denote a neuron as active if it fires spikes in response to at least half of the external
spikes and as inactive otherwise. The network’s activity may then be summarized by a binary
vector xT = (x (1)

T , x (2)

T , . . . , x (N )

T ) in which x (i)
T = 1 if neuron i (i = 1, 2, . . . , N ) is active under

stimulation at a period T and 0 otherwise. The fraction a of active nodes follows as

a = N−1
N∑

i=1

x (i)
T . (1)
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Figure 3. Patterns of network activity. (a) Each horizontal line depicts the activity
of a single neuron in the network. Because every cell fires a spike upon receiving
the first input signal, the raster of action potentials displays a vertical black line
at its outset. The generation of spikes subsequently requires two incoming action
potentials that temporally coincide. The connections between neurons induce
different delays, so an activity pattern results in which some neurons fire at
almost every cycle whereas others remain silent. Noise in the timing of the
external spikes introduces variation in the firing of each neuron. (b) The fraction
of active neurons depends on the mean connectivity C , the average number
of internal connections that each neuron receives. An analytical approximation
(black line) confirms that the fraction of active neurons is independent of the
network size N . Half of the neurons are active at a connectivity C∗.

An analytical approximation provides insight into the dependence of the network’s activity
on its connectivity and size. Assume that a neuron j is active if it receives at least one active
connection, in which we define a connection from another neuron i to neuron j as active if spikes
from neuron i traveling to neuron j can elicit action potentials there in at least half of the trials.
Denote the average number of active connections that a neuron receives by B. The probability
that a neuron does not receive any active connection then reads [1 − B/(N − 1)]a(N−1) and
equals the fraction of inactive neurons:

1 − a = [1 − B/(N − 1)]a(N−1)
≈ e−aB . (2)

The approximation can be solved through the Lambertz W -function

a = 1 +
1

B
W (−Be−B). (3)

Further analysis shows that the average number of active connections can be approximated as
B = 2τC/(tmax − tmin) and the analytically derived average network activity is then in excellent
agreement with numerical simulations (figure 3(b) and appendix B). The fraction of active nodes
does not depend on the network size N if the network connectivity C is independent of N .
Because the probability c of a connection between two neurons follows as c = C/(N − 1) the
resulting network is sparse.

Below we will show that stimulation at different periods T leads to different activity
patterns with the same mean activity a. How much information on the signal period can one
individual activity pattern contain? The potential information content follows from the number
of combinatorial possibilities that exist for activity patterns with the same mean activity a. More
specifically, the more possibilities for such patterns, the higher the information content of each.
Basic combinatorics informs us that a mean activity of a = 1/2, which implies that half of
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the neurons are active and the remaining half inactive, allows the greatest number of activity
patterns. Those patterns are hence the most informative. As the other extreme cases, the mean
activities a = 0 and 1 can each be realized through only one corresponding activity pattern
and each accordingly contains no information on the signal period. We denote the network
connectivity at which half of the neurons are active by C∗ and employ it in the following.

Inaccuracy in phase locking results in noise: spikes from spherical bushy cells, for
example, exhibit a phase distribution that is approximately Gaussian around the mean value
with a standard deviation s that can be as small as one-twentieth of a cycle [7]. Input spikes
therefore arrive at the network neurons at times ξ1, T + ξ2, . . . , (L − 1)T + ξL in which ξk

(k = 1, 2, . . . , L) is a random Gaussian variable with zero mean and standard deviation s.
Although small, this noise evokes slightly different neural activity patterns upon repeated
stimulation. We define this mean pattern as XT = (X (1)

T , X (2)

T , . . . , X (N )

T ) in which X (i)
T = 1 if

neuron i (i = 1, 2, . . . , N ) is active in at least half of the trials and X (i)
T = 0 otherwise.

Stimulation at another signal period T ′ evokes a different mean activity pattern XT ′ . We
can quantify its difference from the mean pattern XT at period T through the relative Hamming
distance between the patterns:

d(XT , XT ′) =
1

N

N∑
i=1

|X (i)
T − X (i)

T ′ |. (4)

This distance specifies the fraction of neurons that differ in their activity between the two
patterns. Analytical calculations and numerical simulations show that the distance increases
linearly in the absolute period difference |T ′

− T| and vanishes for T ′
= T (figure 4(a) and

appendix C). The network thus decodes stimulation periods through distinct patterns of mean
activity. Each such pattern may then selectively activate a particular downstream neuron, whose
activity encodes a specific frequency of stimulation.

The identification of the period from an individual signal is inevitably limited by the noise
in the timing of the external spikes. When a network is stimulated at a period T its single-trial
activity pattern xT differs both from the mean pattern XT at period T and from the mean pattern
XT ′ at another period T ′. Correct discrimination between T and T ′ thus requires the pattern xT

to be closer to XT than to XT ′ .
The relative Hamming distance d(xT , XT ) between xT and XT is the average over the

N random variables |x (i)
T − X (i)

T |. An analytical approximation shows that these variables can be
regarded as effectively independent. The distribution of d(xT , XT ) is therefore Gaussian around
a mean value D(xT , XT ) with a certain standard deviation σ (figure 4(b) and appendix C).
The distance d(xT , XT ′) between xT and XT ′ is also Gaussian around another mean value
D(xT , XT ′) but with the same standard deviation σ as for d(xT , XT ) (figure 4(d)). The two
distributions can be differentiated with at least 95% accuracy when the mean values D(xT , XT )

and D(xT , XT ′) differ by 4σ or more. When is this condition fulfilled?
Because larger system sizes N imply averaging over more neurons, and as confirmed

by analytical and numerical computations, the standard deviation σ decreases as N−1/2 in
accordance with the central limit theorem (figure 4(c) and appendix C). We can therefore resort
to a network that is large enough to yield a sufficiently small variance in the relative Hamming
distance. Correct discrimination of a signal’s period between T and T ′ is then feasible as soon
as the mean value D(xT , XT ) is distinct from D(xT , XT ′).

How does the mean value D(xT , XT ′) depend on the difference in periods? Analytical
and numerical computations show that D(xT , XT ′) increases linearly in |T ′

− T| when
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T ' T T in
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Figure 4. Distances of activity patterns evoked by different signal periods.
(a) The average distance between the mean activity pattern for period T and
that for period T ′ increases linearly in the absolute value |T ′

− T| of the
period difference. Here we have employed N = 1000 and L = 100. (b) The
distributions of the distances d(xT , XT ) (black squares) and d(xT , XT ′) (red
circles) are approximately Gaussian around the mean values D(xT , XT ) (dashed
black line) and D(xT , XT ′) (dashed red line). This result has been obtained
from a single network with N = 1000 neurons, a signal of L = 10 cycles, and
(T − T ′)/T = 3%. Averaged over multiple networks, the standard deviation σ

(shading) is equal for the two configurations. (c) The mean value D(xT , XT )

(black squares) is independent of the network size N , whereas the standard
deviation σ (gray circles) decreases for larger N . The results were obtained
for a signal of length L = 50 cycles. (d) The dependence of the distribution of
d(xT , XT ′) on the period difference |T ′

− T| is plotted for N = 300 and L = 20.
The mean value D(xT , XT ′) (red circles) has a minimum for T ′

= T , at which it
reaches D(xT , XT ) (horizontal black line). For |T ′

− T| above a threshold value
1T the mean value D(xT , XT ′) increases linearly in |T ′

− T| (dashed blue line),
whereas it exhibits a quadratic dependence below (blue shading). The standard
deviation σ of d(xT , XT ′) (red shading) does not depend on the period difference
and equals the standard deviation of d(xT , XT ) (gray shading).

|T ′
− T| > 1T for a threshold difference 1T (figure 4(d) and appendix C). When the periods

of the two signals are closer, |T ′
− T| < 1T , the distance D(xT , XT ′) is proportional to the

squared period difference (T ′
− T )2 and approaches D(xT , XT ) for T ′

= T . The threshold 1T
thus provides a measure for the smallest period difference that a particular network can resolve.

The threshold value 1T is proportional to the mean distance D(xT , XT ) between a single-
trial pattern xT and the mean pattern XT at period T (figure 5 and appendix C). Because the
pattern evoked by a signal of greater length L involves more averages over external spike times,
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Figure 5. Influence of network size N and signal length L . The mean distance
D(xT , XT ′) (red circles) does not change with increasing N but the standard
deviation (red shading) is progressively reduced. Longer signals, however,
induce a lower mean value D(xT , XT ) (black line) and hence a smaller value 1T
at which the crossover occurs from linear to quadratic dependence of D(xT , XT ′)

on |T ′
− T| (blue shading). The standard deviations of d(xT , XT ′) (red shading)

and d(xT , XT ) (gray shading) also decline for longer signals.

Figure 6. Dependence of period resolution on signal length L . (a) The mean
value D(xT , XT ) (black squares) decreases as L−1/2 with increasing signal
length whereas the standard deviation σ (gray circles) exhibits the weaker
dependence L−1/4. The results were computed for N = 1 000. (b) The period
resolution 1T achieved by a network with N = 500 also decreases as L−1/2.

and hence over the phase noise, it results in a mean value D(xT , XT ) that decreases as L−1/2

(figure 6(a) and appendix C). However, a larger network size N does not affect D(xT , XT )

(figures 4(c) and 5).
The threshold 1T also decreases as L−1/2 with increasing signal length L (figure 6(b)).

Longer signals indeed provide more information that can enhance frequency resolution. The
improvement in resolution is less than that expected from the Fourier uncertainty principle, in
which frequency resolution is inversely proportional to signal length [22].
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The threshold 1T for a given signal length is proportional to the noise in the phase-locked
input signal but independent of the neural network’s parameters (appendix C). For a realistic
value for the standard deviation s of one-twentieth of a cycle and for a signal of length L = 200
cycles, we obtain a period resolution 1T/T of about 0.2% (figure 6(b)). This value agrees well
with the human frequency resolution measured in psychoacoustic experiments [15].

3. Discussion

When the brain employs the temporal information contained in phase locking, does it need
to translate the temporal code into another one such as the population code considered here,
or could it leave the temporal representation as it is? We believe that at some point the brain
must translate the temporal information—possibly integrated with other information—into the
activity of relatively few specific ‘grand-mother’ neurons. Indeed, in a psychoacoustic task
of frequency discrimination, human subjects transform their perception of the comparative
frequencies of two tones into motion activity of their hands and fingers through which they
interact with a computer to communicate their judgment. Such motion is controlled by the
sparse activity of a few motor neurons.

Here we propose a mechanism for how the temporal information on frequency can be
encoded in the activity pattern of a neuronal population. A simple, randomly connected network
with a range of signal-propagation delays between neurons can use phase-locked inputs to
replicate the striking frequency discrimination of the human auditory system. As we discuss
below, the population code may then be transformed at a second stage into a representation
through single-neuron activity.

The network encodes different input frequencies in distinct activity patterns. We have
defined those patterns in the simplest possible way, through the mean activity of the network’s
neurons during stimulation. Further statistics of the spike trains fired by the neurons, such as
temporal correlation between the spikes from individual neurons and correlation between spikes
from different neurons, could lead to finer discrimination of activity patterns and hence improve
the precision of frequency discrimination.

The population code that we have defined here may be read out by downstream neurons.
A given downstream neuron may detect a particular activity pattern of the network if it
receives excitatory connections from the neurons that are active for this pattern and inhibitory
connections from the neurons that are inactive for this pattern. Such a representation may be
learned through reinforcement of the excitation as well as the inhibition upon activity of the
corresponding network neurons. The properties and precision of such a downstream read-out
will be investigated in future studies.

Frequency resolution is limited by noise. Here we have considered jitter in the phase-
locked input. The time delays employed by the network, however, arise through the conduction
of action potentials along axons and are also subject to fluctuations. Experimental as well as
simulation studies show that the standard deviation for fluctuations in action-potential velocity
is typically below 1% [12, 23]. In contrast, the noise in phase locking has standard deviations
of a few per cent or more of the signal’s period T . We have therefore ignored fluctuations in
conduction velocity, which may be the subject of a future study.

Temporal delays may also vary on longer time scales. Variation in body temperature can
alter synaptic delays [24]. Aging can change axonal myelination, for example, and thereby
conduction delays. Such changes may be compensated by other variations in axonal conduction
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velocity or synaptic transmission such that the frequency-specific activity patterns remain the
same. Alternatively, if the activity patterns were to change, their read-out through downstream
‘grand-mother’ neurons might adapt appropriately through learning.

In our simulations we have employed a range of temporal delays between network
neurons that encompasses about an octave. Frequency discrimination by such a network is
accordingly restricted to a spectral band of less than an octave, so many networks, each with
a distinct range of temporal delays, are required to cover a broader frequency range. Where
might such structures exist in the brain? The inferior colliculus displays a tonotopic array of
multiple frequency-band laminae, each of which analyzes about one-third of an octave [25, 26].
Substantial signal processing appears to be performed within each lamina, potentially including
pitch detection [27, 28]. Frequency discrimination through frequency-dependent patterns of
network activity might therefore occur in these laminae. Simultaneous recordings from many
interconnected neurons within one lamina would provide an experimental test of this hypothesis.

Neural networks can exhibit emergent computational abilities such as synchronous
information transmission, memory, and speech recognition that are not present at the level
of individual nerve cells [29–34]. It remains uncertain to what extent such brain functions
depend upon a neuron’s precise action-potential timing as opposed to its average firing rate
[11, 35]. Although our study is specific to the auditory system, it may also provide a more
general understanding of the usage of temporal codes for other brain functions.
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Appendix A. Methods

Random neuronal networks are constructed by assigning to every pair (i, j), i 6= j , of neurons
a connection from i to j with a low probability c. The average number of connections emerging
from an individual neuron accordingly reads C = c(N − 1) and equals the average number of
a neuron’s incoming connections. To each connection from a neuron i to another neuron j
we assign a time delay ti j that is drawn randomly between a minimal time tmin and a maximal
time tmax, ti j ∈ [tmin, tmax]. In our simulations we have employed tmin = 1.2 ms and tmax = 2.8 ms,
a standard deviation s = 100 µs for the noise in the phase locking, and a period T = 2 ms.

The probability distributions in figure 4(b) show a typical result from one random network.
All other numerical results, including mean activity patterns and the statistics of distances
between individual trials and mean patterns, have been obtained by averaging over at least 100
different random networks.

We measure the arrival of an action potential at a neuron’s soma by the time at which the
maximum of the depolarization occurs. Each neuron fires an action potential upon arrival of
a signal’s first external spike. The initiation of subsequent action potentials requires that two
action potentials arrive at the neuron’s soma within a time window τ ; in our simulations we
have employed τ = 0.6 ms. Such a difference between generation of the first spike and later
ones could result, for example, from spike adaptation in a neuron. Generation of an action
potential is followed by a refractory period for the duration of which we have assumed 1.2 ms.
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For simulations of network dynamics we have developed a fast, event-based algorithm that
stores the propagating spikes and their arrival times at each neuron. At each step in the algorithm
we then compute the earliest subsequent time at which a neuron fires a spike, determine to which
neurons that spike propagates as well as the associated arrival times, and appropriately update
the list of incoming spikes at those neurons. The mean activity patterns as well as the statistics
of the pattern distance of a single trial from a mean pattern have been computed from at least
100 trials for each network realization.

Appendix B. Analytical computation of the mean network activity

What is a neuron’s average number B of active connections? Suppose that neuron i has an
outward connection to excite neuron j and the spike’s travel time is ti j . Assume that neuron
i fires at a time nT + ξn, such that the signal arrives at neuron j at the time nT + ξn + ti j . For
spike initiation at neuron j this time may differ no more than a time τ from the arrival time
(n + 1)T + ξn+1 of the next external spike there. In other words,

ξn + ti j ∈ [T + ξn+1 − τ, T + ξn+1 + τ ] (B.1)

or

ξn − ξn+1 ∈ [T − ti j − τ, T − ti j + τ ]. (B.2)

Because ξn − ξn+1 is a stochastic process with zero mean and standard deviation
√

2s, the
probability p(T, ti j) that equation (B.2) is fulfilled reads

p(T, ti j) =
1

2

[
erf

(
T − ti j + τ

2s

)
− erf

(
T − ti j − τ

2s

)]
. (B.3)

An external spike at neuron j together with an internal spike received from neuron i therefore
causes neuron j to fire with a probability p(T, ti j). The connection from i to j is active if
the number of such spikes associated with L external spikes is at least L/2. With a binomial
probability of (

k
L

)
p(T, ti j)

k
[
1 − p(T, ti j)

]L−k
, (B.4)

the connection from i to j induces a number k of spikes. For medium and large values of
L this probability approaches a Gaussian with mean Lp(T, ti j) and variance Lp(T, ti j)[1 −

p(T, ti j)]. The probability q(T, ti j) of having at least L/2 external spikes then follows from the
corresponding cumulative probability distribution and reads

q(T, ti j) =
1

2

{
1 + erf

[
p(T, ti j) − 1/2√

2p(T, ti j)[1 − p(T, ti j)]/L

]}
. (B.5)

Denote the index set of neurons that have a forward connection to neuron j as I j . The
average number B of a neuron’s active connections then follows as

B =
1

N

N∑
j=1

∑
i∈I j

q(T, ti j)

=
C

tmax − tmin

∫ tmax

tmin

dtq(T, t). (B.6)
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t

Figure B.1. The probabilities q(T, t) and r(T, T ′, t) and their linear
approximations. (a) The probability q(T, t) (red) is approximately one for t − T
between −τ and τ and zero outside this interval. The transitions at −τ and τ

(gray lines) sharpen for greater signal length; here we have employed L = 10.
The piecewise-linear approximation q lin(T, t), equation (C.13), is shown as a
black dashed line. (b) The probability r(T, T ′, t) (red) and its piecewise-linear
approximation rlin(T, T ′, t) (black dashed) are nonzero in only a small interval of
t − T around −τ and τ (gray lines). The curves have been obtained from L = 10
and T ′

= 1.02 T .

When tmin < T − τ and T + τ < tmax the integral in the above equation equals approximately 2τ

and we obtain

B =
2τC

tmax − tmin
. (B.7)

In conjunction with equation (3), this relation yields an analytical dependence of the fraction a
of active nodes on the connectivity C . This dependence is shown as a black line in figure 3(b) and
agrees excellently with numerical results. We find that a = 0.5 for a connectivity of C∗ ≈ 1.85.

Appendix C. Analytical computation of pattern distances

As described in the introduction, we quantify the distance between two network activity
patterns x = (x (1), x (2), . . . , x (N )) and y = (y(1), y(2), . . . , y(N )) through the relative Hamming
distance

d(x, y) =
1

N

N∑
i=1

|x (i)
− y(i)

|. (C.1)
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Distinct patterns of network activity result from differences in the active connections. Denote
by 1B(x, y) the average number of a neuron’s active connections that differ between the two
patterns x and y. If this difference is small, as it is for the small differences in the signal period
that we consider, the pattern distance d(x, y) can be approximated as depending linearly on the
difference 1B(x, y):

d(x, y) =
da

dB

∣∣∣∣
B∗

B(x, y), (C.2)

in which B∗ follows from the network connectivity C∗ through equation (B.7).
We start by computing the distance d(XT , XT ′) between the mean pattern XT at period T

and the mean pattern XT ′ at period T ′. Consider a connection from a neuron i to another neuron
j with a time delay ti j . For the mean patterns we can ignore the phase noise in equation (B.1):
the connection is thus active under a signal period T when T − τ < ti j < T + τ and vanishes
otherwise. Analogously a signal period T ′ yields an active connection when T ′

− τ < ti j <

T ′ + τ and an inactive connection otherwise. Assume that T < T ′; the other case follows by
analogy. Only when the time delay ti j lies in the intervals (T − τ, T ′

− τ) or (T + τ, T ′ + τ) does
the connection then differ in its activity between the two patterns, and the probability to have
such a time delay is 2|T − T ′

|/(tmax − tmin). The average number 1B(XT , XT ′) of a neuron’s
active connections that differ between the two patterns follows as

1B(XT , XT ′) =
2C∗

tmax − tmin
|T ′

− T | (C.3)

and the pattern distance reads

d(XT , XT ′) =
da

dB

∣∣∣∣
B∗

2C∗

tmax − tmin
|T ′

− T |. (C.4)

As observed numerically, the pattern distance increases linearly in |T ′
− T| (figure 4(a)). For the

parameters employed in our simulations, the above expression yields a slope that is comparable
to but about 20% greater than the numerical value.

Let us now compute the distance d(xT , XT ′) between a single-trial pattern xT during
period T and the mean pattern XT ′ during another period T ′. This distance varies from trial
to trial (figure 4(b)). Again, we consider a connection from a neuron i to another neuron j that
induces a certain time delay ti j . As before, the mean pattern XT ′ is unaffected by the phase noise:
the connection is active when T ′

− τ < ti j < T ′ + τ and vanishes otherwise. For the single-trial
pattern xT , however, the activity may fluctuate: as computed above, the connection is active
with probability q(T, ti j) and zero otherwise (equation (B.5)). To capture this stochasticity we
introduce a random binary variable Z i j that is one when the connection from neuron i to neuron
j differs in its activity between the single-trial pattern xT and the mean pattern XT ′; otherwise
Z i j is zero. We find that Z i j = 1 with a probability r(T, T ′, ti j) and Z i j = 0 with a probability
1 − r(T, T ′, ti j) in which

r(T, T ′, ti j) =

{
q(T, ti j) if ti j < T ′

− τ or ti j > T ′ + τ,

1 − q(T, ti j) if T ′
− τ < ti j < T ′ + τ.

(C.5)

Because the difference 1B(xT , XT ′) follows as the sum over many independent random
variables Z i j ,

1B(xT , XT ′) =
1

N

N∑
j=1

∑
i∈I j

Z i j , (C.6)
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the central limit theorem guarantees that, in the limit of a large system size N , the distribution of
1B(xT , XT ′), and hence of the pattern distance d(xT , XT ′), approaches a Gaussian distribution
(figure 4(b)). The mean value for the distribution of 1B(xT , XT ′) reads

〈1B(xT , XT ′)〉 =
1

N

N∑
j=1

∑
i∈I j

r(T, T ′, ti j) (C.7)

and its variance is〈
1B(xT , XT ′)2

− 〈1B(xT , XT ′)〉2
〉
=

1

N 2

N∑
j=1

∑
i∈I j

r(T, T ′, ti j)[1 − r(T, T ′, ti j)]

=
1

N 2

N∑
j=1

∑
i∈I j

q(T, ti j)[1 − q(T, ti j)]. (C.8)

The mean pattern distance follows from equation (C.2) as

D(xT , XT ′) =
da

dB

∣∣∣∣
B∗

1

N

N∑
j=1

∑
i∈I j

r(T, T ′, ti j) (C.9)

and its variance σ 2 as

σ 2
=

(
da

dB

∣∣∣∣
B∗

)2
1

N 2

N∑
j=1

∑
i∈I j

q(T, ti j)[1 − q(T, ti j)]. (C.10)

The last equality shows that the variance does not depend on T ′. We show that it is also
independent of T as long as T is slightly greater than tmin + τ and less than tmax + τ .

Because the delays ti j are chosen randomly from the interval [tmin, tmax] the sums in
equations (C.9) and (C.10) can be expressed through integrals over time delays t between tmin

and tmax:

D(xT , XT ′) =
da

dB

∣∣∣∣
B∗

C∗

tmax − tmin

∫ tmax

tmin

r(T, T ′, t) (C.11)

and

σ 2
=

(
da

dB

∣∣∣∣
B∗

)2
C∗

N (tmax − tmin)

∫ tmax

tmin

q(T, t )[1 − q(T, t)] . (C.12)

To compute the integral in equation (C.12) we employ a piecewise-linear approximation
qlin(T, t) of q(T, t) (figure B.1):

qlin(T, t) =



0 if t < T − τ − πs/
√

2L

or t > T + τ + πs/
√

2L,

1
2 +

√
L

√
2πs

(t − T + τ) if T − τ − πs/
√

2L < t < T − τ + πs/
√

2L,

1 if T − τ + πs/
√

2L < t < T + τ − πs/
√

2L,

1
2 −

√
L

√
2πs

(t − T + τ) if T + τ − πs/
√

2L < t < T + τ + πs/
√

2L.

(C.13)
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The integral then follows as∫ tmax

tmin

qlin(T, t) [1 − qlin(T ; t)] =

√
2πs

3
√

L
(C.14)

and we obtain

σ 2
=

(
da

dB

∣∣∣∣
B∗

)2 √
2πsC∗

3
√

L N (tmax − tmin)
. (C.15)

The standard deviation σ therefore decreases as N−1/2 with an increasing system size N and as
L−1/4 for greater signal length L , in agreement with our numerical results (figures 4(c) and 6(a)).
The standard deviation is moreover independent of the signal periods T and T ′ as we have also
found numerically (figures 4(b) and 5). The values predicted by the above analytical expression
are about 30% lower than those calculated numerically.

The linear approximation qlin(T, t) results, through equation (C.5), in a piecewise-linear
approximation rlin(T, T ′, t) for r(T, T ′, t) that we employ to approximate the integral in
equation (C.11) (figure B.1). Two cases then emerge. Firstly, for small period differences
|T ′

− T |6 πs/
√

2L we obtain∫ tmax

tmin

rlin(T, T ′, t) =
π 2 s2 + 2L(T ′

− T )2

√
2Lπs

(C.16)

and a mean pattern distance of

D(xT , XT ′) =
da

dB

∣∣∣∣
B∗

C∗

π 2s2 + 2L(T ′
− T )2

√
2Lπs(tmax − tmin)

. (C.17)

The pattern distance is quadratic in T ′
− T for these small period differences, and has a

nonvanishing minimum at T ′
= T as seen in numerics (figure 5).

Secondly, for larger period differences |T ′
− T |> πs/

√
2L we compute∫ tmax

tmin

rlin(T, T ′, t) = 2|T ′
− T | (C.18)

and obtain

D(xT , XT ′) =
da

dB

∣∣∣∣
B∗

2C∗

tmax − tmin
|T ′

− T |. (C.19)

For these larger period differences the pattern distance thus increases linearly in |T ′
− T| as

we have already found numerically (figure 5). Because the value 1T = πs/
√

2L separates
the two regimes, we consider it to be the network’s threshold for period discrimination. The
above analytical expression shows that 1T is independent of the system size N but decreases
according to L−1/2 with increasing signal length L , in agreement with our numerical results
(figure 6(b)).

Equations (C.17) and (C.19) show that the mean distance D(xT , XT ′) is invariant under
exchange of T and T ′: D(xT , XT ′) = D(xT ′, XT ), in agreement with the numerical results.
Because the standard deviation σ does not depend on either T or T ′, it follows that the
distributions of d(xT , XT ′) and d(xT ′, XT ) are identical.
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