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Abstract
Most sounds of interest consist of complex, time-dependent admixtures of tones of diverse frequencies
and variable amplitudes. To detect and process these signals, the ear employs a highly nonlinear,
adaptive, real-time spectral analyzer: the cochlea. Sound excites vibration of the eardrum and the three
miniscule bones of the middle ear, the last of which acts as a piston to initiate oscillatory pressure
changes within the liquid-filled chambers of the cochlea. The basilar membrane, an elastic band
spiraling along the cochlea between two of these chambers, responds to these pressures by conducting a
largely independent traveling wave for each frequency component of the input. Because the basilar
membrane is graded in mass and stiffness along its length, however, each traveling wave grows in
magnitude and decreases in wavelength until it peaks at a specific, frequency-dependent position: low
frequencies propagate to the cochlear apex, whereas high frequencies culminate at the base. The
oscillations of the basilar membrane deflect hair bundles, the mechanically sensitive organelles of the
ear’s sensory receptors, the hair cells. As mechanically sensitive ion channels open and close, each hair
cell responds with an electrical signal that is chemically transmitted to an afferent nerve fiber and
thence into the brain. In addition to transducing mechanical inputs, hair cells amplify them by two
means. Channel gating endows a hair bundle with negative stiffness, an instability that interacts with
the motor protein myosin-1c to produce a mechanical amplifier and oscillator. Acting through the
piezoelectric membrane protein prestin, electrical responses also cause outer hair cells to elongate and
shorten, thus pumping energy into the basilar membrane’s movements. The two forms of motility
constitute an active process that amplifies mechanical inputs, sharpens frequency discrimination, and
confers a compressive nonlinearity on responsiveness. These features arise because the active process
operates near a Hopf bifurcation, the generic properties of which explain several key features of
hearing. Moreover, when the gain of the active process rises sufficiently in ultraquiet circumstances, the
system traverses the bifurcation and even a normal ear actually emits sound. The remarkable properties
of hearing thus stem from the propagation of traveling waves on a nonlinear and excitable medium.

Keywords: cochlea, basilar membrane, hair cell, traveling wave

(Some figures may appear in colour only in the online journal)

Glossary

• Apex of the cochlea—the low-frequency region of the
cochlea, at the top of its snail-like spiral.

1 Present address: Department of Bioengineering, Imperial College London,
London SW7 2AZ, UK.

• Base of the cochlea—the high-frequency region of the
cochlea, at the bottom of its snail-like spiral.

• Basilar membrane—an elastic strip inside the cochlea that
supports the organ of Corti and oscillates in response to
sound.

• Cochlea—the inner ear; the organ responsible for
sensitivity to sound.
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• Collagen—the principal protein component of connective
tissue, which occurs in elastic fibers that bind tissues
together.

• Deiters’ cell—the supporting cell between an outer hair
cell and the basilar membrane.

• Endolymph—the K+-rich, Ca2+-poor solution in the scala
media.

• Epithelium—a flat sheet of cells that are interconnected
with one another and separate different liquid-filled
compartments of the body.

• Hair bundle—the mechanosensitive organelle of a hair
cell, comprising a cluster of several stereocilia and a single
kinocilium.

• Hair cell—the mechanically sensitive cell of the cochlea;
similar cells also detect acceleration in the organs of the
vestibular system.

• Helicotrema—the liquid-filled connection between the
scala vestibuli and scala tympani at the cochlear apex.

• Hensen’s cell—a specific type of supporting cell within
the organ of Corti.

• Inner hair cell—the type of cochlear hair cell that forwards
electrical signals to the brain.

• In vitro—literally ‘in glass’; characteristic of experimental
conditions outside an animal.

• In vivo—literally ‘in life’; characteristic of conditions in
a largely intact animal.

• Kinocilium—a constituent of a hair bundle, resembling
the cilia that provide motility to sperm and in the airways
of the respiratory system.

• Membrane potential—the difference in voltage across the
fatty membrane surrounding a cell.

• Myosin—a motor protein related to that responsible for
the contraction of muscles.

• Nerve fiber—the extension of a nerve cell that connects to
other neurons; synonymous with axon.

• Organ of Corti—a strip of cells on the basilar membrane
that includes the hair cells.

• Otoacoustic emission—sound produced within and
broadcast by the cochlea.

• Outer hair cell—the type of cochlear hair cell that provides
mechanical amplification.

• Oval window— the elastic, membrane-covered opening
in the cochlea’s scala vestibuli that connects to the tiny
bones of the middle ear.

• Perilymph—the Na+-rich solution in the scala vestibuli
and scala tympani.

• Prestin—the motor protein occurring in the membranes
of outer hair cells and responsible for somatic motility.

• Reissner’s membrane—an elastic strip inside the cochlea
that separates the scala vestibuli from the scala media.

• Round window—the elastic, membrane-covered opening
in the cochlea’s scala tympani.

• Scala—one of three liquid-filled compartments inside
the cochlea; the scala vestibuli, scala media, and scala
tympani are delimited by Reissner’s membrane and the
basilar membrane.

• Somatic motility—the piezoelectric process by which an
outer hair cell changes length in response to altered
membrane potential; synonymous with electromotility.

• Stereocilium—One of the cylindrical extensions from
the top or apical surface of a hair cell and the site of
mechanoelectrical transduction; a component of the hair
bundle.

• Soma—a cell body, especially of a hair cell or nerve cell.
• Supporting cell—an epithelial cell that adjoins a hair cell

and provides metabolic assistance.
• Synapse—a cellular structure through which a hair cell or

neuron can transmit an electrical signal to another neuron,
usually through the intervention of a chemical signal.

• Tectorial membrane—an acellular gel in the cochlea that
attaches to the hair bundles of outer hair cells and deflects
them during oscillations of the basilar membrane.

1. Introduction

The performance of the human ear would be as remarkable for
a carefully engineered device as it is for a product of evolution.
The frequency response of a normal human ear extends to
20 kHz, and that of an ear in a whale or bat can exceed 100 kHz.
Measured at the eardrum, an ear is sensitive to mechanical
stimuli of picometer dimensions. The dynamic range of human
hearing encompasses 120 dB of sound-pressure level (SPL), a
millionfold range in input amplitude and a trillionfold range of
stimulus power. Explaining how the ear meets these technical
specifications is a major challenge for biophysics.

In this review we describe the biophysical principles
through which the ear achieves its remarkable performance.
A main focus is the active process of the cochlea, which
provides tuned mechanical amplification of weak signals.
Our presentation involves theoretical descriptions of the main
biophysical aspects as well as illustrations and descriptions of
key experiments.

We begin our discussion at the level of the whole inner
ear, which employs specialized hydrodynamics to separate
a complex sound mechanically into its distinct frequency
components (section 2). The active process is introduced
through a historical overview of its discovery (section 3). We
then delve into the cellular and molecular components that
mediate mechanotransduction, that is, the transformation of
the mechanical sound signal into electrical action potentials
in neurons and thus the language of the brain (section 4).
Mechanotransduction is achieved in specialized hair cells
that also exhibit mechanical activities that underlie the active
process. From there we return to the active hydrodynamics
of the inner ear, starting from a description of the active
micromechanics of the organ of Corti that houses the hair
cells (section 5) and continuing to active wave propagation
(section 6). Important insight into the cochlea’s active fluid
dynamics comes from otoacoustic emission, sound that is
produced inside the inner ear through the active process and
emitted into the ear canal (section 7). We conclude with a brief
overview of future research goals.
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Figure 1. Structure of the ear. (a) Sound propagating through air as
a compressive wave is funneled onto the eardrum by the external ear
and the ear canal. The middle ear conveys the eardrum’s resulting
vibration (green arrow) to the inner ear, or cochlea, where it
oscillates the elastic oval window (OW). A second elastic
membrane, the round window (RW), can also oscillate to
compensate for the resulting fluid displacement inside the cochlea.
(b) A longitudinal and (c) a transverse section of the uncoiled
cochlea show its interior structure. Two elastic membranes, the
basilar membrane (BM) and Reissner’s membrane (RM), delineate
three liquid-filled chambers: the scala vestibuli (SV), scala media
(SM), and scala tympani (ST). The mechanosensitive hair cells (red)
are embedded in the organ of Corti on the basilar membrane.

1.1. Structure of the ear

The external ear acts as a funnel to collect airborne
sound vibration that the ear canal transmits to the eardrum
(figure 1(a)). The middle ear consists of the three smallest
bones in the body—the malleus, incus, and stapes—that
together convey the eardrum’s vibration to the oval window, an
elastic opening in the bony casing of the cochlea or inner ear.

Vibration of the oval window elicits waves within the
cochlea. Whereas sound propagates in air as longitudinal
pressure waves, the relevant signals inside the cochlea travel as
surface waves on two elastic structures, the basilar membrane
and Reissner’s membrane, that partition the inner ear into three
parallel, liquid-filled scalae (figures 1(b) and (c)). Because
the liquid may be regarded as incompressible, the volume
displaced by the moving oval window must be compensated
by the motion of liquid elsewhere; this is accomplished at the
elastic round window. Detailed descriptions of the cochlea’s
hydrodynamics and its capacity to spatially separate different
frequencies are the subject of section 2.

How is sound-induced vibration inside the cochlea
transduced into electrical signals in nerve fibers? Specialized
sensory receptors called hair cells are situated along the basilar
membrane in the organ of Corti (figure 1(c)). Each of these
cells has at its apex a hair bundle consisting of rigid, parallel
cylindrical protrusions termed stereocilia. An appropriately
directed displacement of this bundle opens mechanosensitive
ion channels, allowing cations such as K+ and Ca2+ to flow
into the cell and depolarize it. Because a hair cell is connected
to the basilar membrane in such a way that vibration of
the membrane displaces the hair bundle, sound elicits an
electrical signal inside the cell. When the change in the
membrane potential is large enough, it triggers the release of
chemical neurotransmitter at the cellular base and elicits action
potentials in the associated auditory-nerve fibers.

The influx of K+ and Ca2+ through the hair bundle’s
mechanotransduction channels is enhanced by an additional
cochlear specialization. The hair bundles are bathed in
endolymph, a K+-rich solution that fills the scala media.
In contrast, the scala vestibuli and scala tympani contain
perilymph whose ionic composition is dominated by Na+

instead of K+. Because endolymph has an enhanced potential
of 80–120 mV as compared to perilymph—the so-called
endocochlear potential—and the somata of hair cells are
negatively polarized at about −50 mV, a potential difference
of 150 mV across the stereociliary membranes drives cations
through the mechanotransduction channels.

The physiological function of Reissner’s membrane now
becomes apparent. Like the basilar membrane, it is covered by
a layer of epithelial cells that provides the electrical insulation
required to sustain the endocochlear potential. In contrast to
the basilar membrane, however, its displacement does not serve
a physiological function. We discuss in chapter 7 evidence that
vibrations of Reissner’s membrane play a role in otoacoustic
emission, that is, sound produced by the cochlea.

Remarkably, hair cells not only transduce mechanical
signals into electrical ones, but also amplify weak mechanical
stimuli through the production of mechanical forces. Section 3
gives an overview of the discovery of this active process
and section 4 describes the motile machinery of hair cells
in more detail. How exactly the activity of hair cells
influences the mechanics of the cochlea remains incompletely
understood. A description of fundamental considerations
regarding this question and of recent research are the scope of
sections 5–7.

2. Fluid dynamics of the passive cochlea

Oscillatory mechanical vibration can elicit different types of
waves in liquid media. Compression and expansion of a
fluid, for instance, results in longitudinal sound waves. As
another example, surface waves can arise at the deformable
interface between two media. Such waves occur on the
basilar membrane inside the cochlea and transmit mechanical
vibration to the hair cells. This section provides a detailed
discussion of those waves. We start with a review of
sound waves; the mathematical formalism developed thereby
is then extended to describe surface waves on the basilar
membrane.
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2.1. Sound propagation in a liquid medium

The Navier–Stokes equation for the velocity u, pressure p,

and density ρ of an inviscid fluid reads

ρ∂tu + ρ (u∇) u = −∇p. (2.1)

For oscillatory motion at an angular frequency ω, the quadratic
velocity term (u∇) u owing to convective acceleration can
be ignored if the displacement amplitude a is much smaller
than the wavelength λ. Indeed, the amplitude of the fluid
velocity u is aω, such that the term ∂tu in equation (2.1) is
of the order aω2, whereas the term (u∇) u is of the order
a2ω2/λ. When a � λ it follows that the quadratic term is
small, (u∇) u � ∂tu.

The vibrational amplitudes of sound are tiny. As an
example, the displacement associated with a very loud sound
of 100 dB SPL at a frequency of 1 kHz is several micrometers
for sound in air or around 2 nm for sound in water. The
corresponding wavelengths are several orders of magnitude
larger, about 300 mm in air and more than 1 m in water. The
surface waves on the basilar membrane described below have
wavelengths of the order of 1 mm, whereas the displacement
is below 1 µm even for loud sounds. We can therefore
safely ignore the quadratic term (u∇)u in the Navier–Stokes
equation.

Because we consider only small displacements, the
density changes are also small and occur around a mean density
ρ0. To leading order we can approximate ρ∂tu ≈ ρ0∂tu.
The Navier–Stokes equation (2.1) thus becomes an equation
of momentum that relates an acceleration—that is, a temporal
change in the velocity—to a force, in this instance owing to a
pressure gradient:

ρ0∂tu = −∇p. (2.2)

The equation of continuity informs us that a temporal change
in density must be related to a net flux:

∂tρ = −ρ0∇u. (2.3)

On the other hand, a density change follows from a local
pressure change owing to the liquid’s compressibility κ:

∂tρ = ρ0κ∂tp. (2.4)

We thus obtain
∇u = −κ∂tp, (2.5)

which, combined with equation (2.2) for the fluid’s
momentum, yields a wave equation for the pressure:

�p = ρ0κ∂2
t p. (2.6)

Velocity and density follow through equations (2.2) and (2.4)
and obey analogous wave equations. Equation (2.6) describes
the propagation of sound through local compression of the
liquid medium, producing a wave of wavelength

λ = 2π/(ω
√

ρ0κ) (2.7)

that progresses at the speed

c = 1/
√

ρ0κ. (2.8)

2.2. Surface waves on the basilar membrane

Waves of a different type are key in the cochlea (de Boer,
1980, 1984, 1991, Lighthill 1981, Pickles 1996, Ulfendahl
1997, Robles and Ruggero 2001). Sound signals propagate
as surface waves on the elastic basilar membrane with a much
smaller wavelength and hence speed than a sound wave moving
through a fluid. To understand the physics of a surface wave,
consider a two-dimensional section along the uncoiled cochlea
in which the longitudinal position x measures the distance from
the base toward the apex. The vertical position z denotes the
distance from the resting position of the basilar membrane
(figure 2(a)). A positive value z therefore denotes a position
inside the upper chamber, which combines scala media and
scala vestibuli. The unstimulated basilar membrane lies at
z = 0 and negative values of z occur in the lower chamber, the
scala tympani. We assume that both chambers have an equal
height h, such that the upper and lower walls are located at
respectively the positions z = h and z = −h.

In combining the scala vestibuli and scala media into a
single compartment we ignore Reissner’s membrane. At least
within the basal and middle turns of the cochlea we can justify
this simplification, for the impedance of Reissner’s membrane
there is well below that of the basilar membrane (Bekesy
1960). In the apical turn, however, the impedances of the
two membranes become comparable with largely unknown
consequences for cochlear hydrodynamics. In section 7.4 we
discuss a cochlear model that includes both membranes.

Let p(1) and p(2) be the pressures in respectively the
upper and lower chambers and denote by u(1) and u(2) the
corresponding velocities of fluid elements in the vertical
dimension. The wave that we are seeking is influenced
critically by the impedance of the basilar membrane. Because
the impedance depends on the frequency of stimulation—
through contributions from inertia, viscosity, and stiffness—
we consider stimulation at a single angular frequency ω. The
pressures and velocities then read p(1,2) = p̃(1,2)eiωt + c.c. and
u(1,2) = �u(1,2)eiωt + c.c. Here and in subsequent appearances,
‘c.c.’ represents the complex conjugate and the tilde denotes
a Fourier coefficient.

The pressures obey the wave equation (2.6) derived above,
which for the Fourier coefficients takes the form

�p̃(1,2) = −ω2ρ0κp̃(1,2). (2.9)

Boundary conditions arise at the cochlear walls, where the
vertical velocity must vanish: �u(1)

z

∣∣
z=h

= �u(2)
z

∣∣
z=−h

= 0.
Equation (2.2) for the fluid momentum provides a linear
relation between the vertical velocity and the z-derivative of
the pressure: ∂zp̃

(1,2) = −iωρ0�u
(1,2)
z , such that the vertical

variation in the pressure vanishes at the cochlear walls:

∂zp̃
(1)

∣∣
z=h

= ∂zp̃
(2)

∣∣
z=−h

= 0. (2.10)

Another boundary condition concerns the vertical velocity
Ṽ = �u(1,2)

z

∣∣
z=0 of the basilar membrane, which is related to the

pressure difference across the membrane through its acoustic
impedance Z:

Ṽ = 1

Z

(
p̃(2) − p̃(1)

)∣∣
z=0 . (2.11)
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Figure 2. Wave propagation in the cochlea. (a) Two-dimensional
model of the uncoiled cochlea. The scala vestibuli and scala media
are represented as a single chamber, separated from the scala
tympani by the basilar membrane. (b) Surface view of the basilar
membrane. Collagen fibers (gray) run from the neural to the
abneural edge. The longitudinal coupling between them is small,
and a membrane segment (red shading) of the width of one hair cell,
about 8 µm, can accordingly be considered as mechanically
uncoupled from neighboring segments. (c) In the case of a small
wavelength, λ � h, the trajectories of liquid particles are circular
and their amplitudes decay exponentially away from the membrane.
Each arrow’s head denotes the position of a particle at a given time.
(d) In the instance of a large wavelength, λ � h, motion occurs
predominantly in the longitudinal direction.

Such a linear relation between pressure difference and
membrane velocity may be assumed because the amplitudes
of the sound vibrations are tiny, as argued above. In a
living cochlea, however, the mechanical activity of hair cells
amplifies the basilar membrane’s displacement and yields a
nonlinear relation between membrane velocity and pressure
difference; we discuss this in section 6.3.

The basilar membrane’s vertical velocity also follows
from the pressures through equation (2.2) for the fluid

momentum, which yields −iωρ0 Ṽ = ∂zp̃
(1)

∣∣∣
z=0

= ∂zp̃
(2)

∣∣
z=0

and hence

∂zp̃
(1)

∣∣
z=0 = ∂zp̃

(2)
∣∣
z=0 = − iρ0ω

Z

(
p̃(2) − p̃(1)

)∣∣
z=0 .

(2.12)

The hydrodynamics of the two-dimensional cochlear model is
therefore described by equation (2.9) with boundary conditions
(2.10) and (2.12). Although these equations are linear in
the pressures, an analytical solution is complicated by the
longitudinal variation in the impedance, Z = Z(x). In the
next section we discuss how the model can nevertheless be
solved through an approximation. Here we proceed with an
analysis of the simpler case in which the basilar-membrane
impedance is spatially constant; the solution will then inform
the subsequent approximation.

Consider stimulation at a single angular frequency ω and
make the following ansatz for the pressures p̃(1) and p̃(2):

p̃(1) = p̂(1) cosh[k(z − h)]e−ikxx + c.c.,

p̃(2) = p̂(2) cosh[k(z + h)]e−ikxx + c.c.
(2.13)

The wave vector kx implies that the wave travels in the
longitudinal direction at a phase velocity c = ω/kx . This
wave speed must be distinguished from the vertical velocity V

at which any element of the basilar membrane vibrates. The
coefficient k defines a length scale 1/k over which the amplitude
decays in the vertical direction.

The boundary conditions (2.10) at the cochlear walls are
satisfied with the above ansatz, and equation (2.9) requires that

k2
x = k2 + ρ0κω2. (2.14)

The boundary condition (2.12) at the membrane can be written
in the matrix form

(A − ζ I )p̂ = 0 (2.15)

in which the vector p̂ = (
p̂(1), p̂(2)

)T
contains both pressure

amplitudes, A =
(

1 −1
−1 1

)
is a 2 × 2 matrix, I is the 2 × 2

identity matrix, and ζ = iZk tanh[kh]/(ρ0ω).
The matrix equation (2.15) is fulfilled when ζ is an

eigenvalue of the matrix A and when p̂ is a corresponding
eigenvector. The matrix A has two eigenvalues and two
corresponding eigenvectors,

ζ(1) = 0, e(1) =
(

1
1

)
;

ζ(2) = 2, e(2) =
(

1
−1

)
.

(2.16)

There accordingly exist two solutions and hence two modes of
wave propagation in the cochlea.

In the first solution, which follows from ζ(1) and e(1),
the pressures are the same on both sides of the membrane.
The membrane’s displacement thus vanishes, as does the
vertical variation in pressure and velocity (k = 0). The
wave emerges from longitudinal variation only and represents
the conventional sound wave derived in the previous section
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(equation (2.6)). For this wave the two-chamber architecture of
the cochlea is inconsequential, for the wave elicits no basilar-
membrane displacement. Although this wave mode has no
known importance for the physiological functioning of the
inner ear, it might be involved in the backward propagation
of otoacoustic emissions (section 7).

The second solution is physiologically relevant. The
pressure changes on both sides of the membrane are equal in
magnitude but of opposite sign. The membrane displacement
does not vanish, and the quantity k is determined by the
dispersion relation

k tanh[kh] = −2iρ0ω/Z. (2.17)

The wave vector kx follows from equation (2.14). For realistic
values of the cochlear impedance Z, however, the quantity k2

greatly exceeds ρ0κω2 and hence kx ≈ k. The wavelength
follows as λ = 2π/k and is considerably smaller than that of
the compressional wave, equation (2.7).

Let us pause to see how the membrane’s impedance Z

shapes the wave. The basilar membrane consists of parallel
collagen fibers that run radially between the neural and the
abneural sides of the temporal bone (figure 2(b)). The
longitudinal coupling between the fibers is weak: its space
constant has been estimated as only 20 µm (Emadi et al 2004)
or as between 10 and 50 µm, depending on the longitudinal
position in the cochlea (Naidu and Mountain 2001). The
membrane may therefore be treated as a longitudinal array of
thin, uncoupled segments. Each segment possesses a mass m,
friction coefficient ξ , and stiffness Kand responds to a pressure
difference across it according to Newton’s equation of motion.
This can be written as

ZṼ = p̃, (2.18)

in which Z denotes the acoustic impedance of the membrane
segment that we assume to have an area A (figure 2(b)):

Z = (iωm + ξ − iK/ω) /A. (2.19)

Under what conditions does this impedance yield a propagating
wave? The real part of the wave vector k encodes the
wavelength and its imaginary part describes the amplitude
change owing to damping. For a traveling wave the wave
vector must accordingly have a non-vanishing real part, which
necessitates a positive real part of the left-hand side of the
dispersion relation (2.17). The right-hand side of this equation
has a positive real part only when the imaginary part of the
impedance (2.19) is negative, that is, when the impedance
is dominated by stiffness. In the opposite case, when mass
dominates stiffness, the wave vector is purely imaginary; an
evanescent wave then arises. Both conditions occur in the inner
ear. Indeed, in section 2.5 below we show that the cochlea
ingeniously achieves frequency selectivity by employing a
resonance at the transition from stiffness- to mass-dominated
impedance.

The dispersion relation (2.17) remains constant upon
changing the sign of the wave vector, so a solution with a
certain wave vector k implies that −k satisfies the dispersion

relation as well. It follows that a given wave can propagate
both forward and backward along the membrane.

Regarding the wavelength, two limiting cases are
important (Lighthill 1981). First, when the wavelength is much
less than the height of the channels, that is when kh � 1, we
can approximate cosh[k(z − h)] ≈ ek(h−z)/2 for z > 0 and
cosh[k(z + h)] ≈ ek(z+h)/2 for z < 0 in the ansatz for the
pressures, equation (2.13). The fluid velocity and pressure
then decay exponentially with the vertical distance from the
membrane. Water particles undergo circular motion, which for
a forward-traveling wave is clockwise below and anticlockwise
above a basilar membrane oriented as in figure 2(c). The
motion near the cochlear walls is essentially zero, so those
boundaries have no influence on the wave. The dispersion
relation (2.17) simplifies to

|k| = −2iρ0ω/Z. (2.20)

This situation corresponds to the deep-water approximation
for surface waves.

In the second limiting case, the wavelength greatly
exceeds the height of the chambers: kh � 1. The dispersion
relation is then given approximately by

k2 = −2iρ0ω/(Zh). (2.21)

Water particles move on elliptical trajectories, for which
motion occurs predominantly in the longitudinal direction
(figure 2(d)). The longitudinal component of velocity barely
depends on the vertical position. As shown in the following
section, the vertical variation can therefore be neglected and the
wave treated by a one-dimensional model for the longitudinal
variation alone.

2.3. One-dimensional model

The wavelength of the basilar-membrane wave basal to its
resonant position usually exceeds a few millimeters whereas
the height of the channels is 0.5 mm or less. Much can
therefore be learned about the behavior of the traveling wave
from the long-wavelength approximation, kh � 1. Because
the variation in the vertical direction is then small, the
hydrodynamics can be described through a one-dimensional
wave equation for the longitudinal variation alone.

Let us start from equation (2.5) within the upper chamber:

∇�u(1) = −iωκp̃(1). (2.22)

We integrate this equation over a small volume v that spans the
height h of the chamber and extends longitudinally by a small
amount dx (figure 3). Employing Gauss’s divergence theorem
we obtain ∮

s

�u(1)ds = −iωκ

∫
v

p̃(1)dv (2.23)

in which s is the volume’s surface. Because the vertical
variation of p̃(1) is small compared to the longitudinal change,
equation (2.23) becomes

h
[
u(1)

x (x + dx) − u(1)
x (x)

] − u(1)
z (x, z = 0) dx

= −iωhκp̃(1)(x) dx. (2.24)
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Figure 3. One-dimensional model of traveling-wave
propagation. Integration over a thin volume (dark blue) within the
two-dimensional model that spans the height h of a chamber and
extends longitudinally by a small distance dx allows one to derive
a one-dimensional wave equation for the pressure difference across
the basilar membrane.

The terms in brackets on the left-hand side can be combined to
yield a derivative ∂xũ

(1)
x . We rewrite this derivative with help

of the longitudinal volume flow j (1) = hu(1)
x . The subsequent

term in equation (2.24) contains the vertical velocity near the
membrane that follows from the pressure difference through
the membrane impedance Z, equation (2.11). We thus obtain

∂xj̃
(1) = (

p̃(2) − p̃(1)
)
/Z − iωhκp̃(1). (2.25)

This equation has an intuitive interpretation: a longitudinal
change in the fluid’s volume flow arises either from a
membrane displacement, and thus a change in the height of
the chamber, or from a compression of the fluid.

The longitudinal component of equation (2.2) yields
another equation that relates volume flow and pressure,

iωρ0j̃
(1) = −h∂xp̃

(1). (2.26)

We can use this equation to eliminate the volume flow j̃ (1) in
the equation above to arrive at a relation for the pressure alone:

∂2
xp(1) = −ω2ρ0κp̃(1) − iωρ0

Zh

(
p̃(2) − p̃(1)

)
. (2.27)

This is the wave equation (2.6) but with an additional term
that results from the membrane’s displacement. An analogous
computation for the lower chamber yields

∂2
xp(2) = −ω2ρ0κp̃(2) +

iωρ0

Zh

(
p̃(2) − p̃(1)

)
. (2.28)

As in the two-dimensional description considered above,
these coupled partial differential equations have two distinct
solutions. First, the average pressure 
 = (p(1) + p(2))/2
propagates as a fast sound wave through compression of the
liquid:

∂2
x 
̃ = −ω2ρ0κ
̃. (2.29)

With a wavelength at least severalfold the length of the cochlea,
this wave traverses the organ in about 20 µs and does not
displace the basilar membrane.

Second, the pressure difference between the upper and the
lower chambers, p = p(2) −p(1), propagates along the basilar
membrane as a slow wave:

∂2
x p̃ = 2iωρ0

Zh
p̃. (2.30)

We have discarded the compressibility, which makes a minor
contribution as compared to the basilar-membrane impedance.
Equation (2.30) represents the one-dimensional wave equation
that we sought; it describes the longitudinal propagation of
the traveling wave of basilar-membrane deflection. We verify
easily that it obeys the dispersion relation (2.21) for a basilar-
membrane wave of great wavelength.

2.4. Wentzel-Kramers-Brillouin approximation and energy flow

The basilar-membrane impedance Z in the actual cochlea is not
constant but changes systematically with longitudinal position
x. What are the implications for the hydrodynamics and the
basilar-membrane wave?

The Wentzel–Kramers–Brillouin (WKB) approximation
provides useful analytical insight into the behavior of a
wave propagating in an inhomogeneous medium. The
approximation was originally developed for quantum
mechanics, in which the Schrödinger equation describes the
dynamics of particles travelling in a potential landscape. When
the potential varies spatially, the Schrödinger equation can
become difficult to solve and closed analytical solutions are
typically infeasible. The WKB approximation provides a
simple and general way to obtain an approximate analytical
solution.

The approximation can be successfully applied to wave
propagation in the cochlea (Zweig et al 1976, Steele and Taber
1979, Steele and Miller 1980, Reichenbach and Hudspeth
2010a). We illustrate the method in the most relevant case of a
long wavelength, in which wave propagation can be described
through the one-dimensional equation (2.30).

Let us start from the ansatz

p̃ = p̂(x) exp

[
−i

∫ x

0
dx ′k(x ′)

]
(2.31)

with the wave’s pressure amplitude p̂(x) and the local wave
vector k(x). The local wavelength follows as λ(x) = 1/k(x).
In the WKB approximation we assume that the spatial scale
over which the impedance Z(x) changes is large compared
to the wavelength. Many cycles of oscillation therefore
occur within a segment of the membrane whose impedance
is approximately uniform. Only on a larger length scale does
a significant impedance change occur and cause variations
in amplitude. The wave vector is accordingly much larger
than the relative change of pressure amplitude: k(x) �[
∂xp̂(x)

]
/p(x). The left-hand side of the one-dimensional

wave equation (2.30) is therefore dominated by the term
proportional to k2(x):

∂2
x p̃(x) = −k2(x)p̂(x) exp

[
−i

∫ x

0
dx ′k(x ′)

]
+ o(k2).

(2.32)
To leading order, the one-dimensional wave equation (2.30)
thus yields

k2(x) = −2iωρ0/[Z(x)h]. (2.33)

This dispersion relation agrees with that obtained for the
case of a spatially homogenous membrane impedance,
equation (2.21). The local wave vector and wavelength then
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follow from the local impedance as if the latter did not vary.
In particular, the wavelength is proportional to the square
root of the impedance, λ ∼ √

Z. Of course, this is a
consequence of our assumption that the spatial scale at which
the membrane impedance changes greatly exceeds the local
wavelength. The speed c (x) = ω/k(x) at which the wave
advances longitudinally also follows from the local membrane
properties alone:

c(x) =
√

iωZ (x) h

2ρ0
. (2.34)

Spatial impedance changes modify the wave’s amplitude.
Consider equation (2.30) with the ansatz (2.31) to first order
in k:

2ik∂xp̂(x) + i[∂xk(x)]p̂(x) = 0, (2.35)

which yields p̂(x) ∼ 1/
√

k(x) and hence

p̂ = p̂0

√
λ(x), (2.36)

with an integration constant p̂0. The amplitude thus varies
as the square root of the local wavelength. If this wavelength
declines owing to impedance changes, then so do the amplitude
and speed of propagation. In contrast, when an impedance
change increases the local wavelength, the wave’s amplitude
and speed also rise. The virtue of the WKB approximation
is that it quantifies these relations and confirms their general
validity.

How does the basilar membrane’s vertical velocity depend
on the impedance? This velocity Ṽ follows from a pressure
difference across the basilar membrane through division by the
impedance Z (equation (2.11)). We obtain

Ṽ = V̂ (x) exp

[
−i

∫ x

0
dx ′k(x ′)

]
(2.37)

with an amplitude V̂ (x) = p̂/Z. Because the amplitude
p̂ varies as p̂ ∼ 4

√
Z, we find that the velocity’s amplitude

V̂ depends on the impedance according to

V̂ ∼ 1/
4
√

Z3. (2.38)

The dependence on the local wave vector is thus V̂ ∼ 1/
√

λ3.
The basilar membrane’s vertical velocity increases when
the wavelength declines and decreases when the wavelength
grows.

The variation in velocity can be understood in a physically
more intuitive way by considering the wave’s energy flow in
the absence of an active process. The energy associated with
a segment of the moving basilar membrane is proportional to
the impedance Z and the squared vertical velocityV̂ 2, hence to
V̂ 2Z. The energy flow is obtained by multiplying the energy
by the traveling wave’s speed c = ω/k, which through the
dispersion relation (2.33) is proportional to the square root of
the impedance, c ∼ √

Z (equation (2.34)). The energy flow
thus varies in proportion to V̂ 2

√
Z3. This value is constant if

the amplitude V̂ varies as V̂ ∼ 1/
4
√

Z3, which is also the result
of the WKB approximation (equation (2.38)).

2.5. Resonance and critical-layer absorption

The cochlea achieves its astonishingly sharp frequency
selectivity by combining a traveling wave on the basilar
membrane with a local resonance that arises from the interplay
of mass and stiffness to set the impedance Z (equation (2.19)).
The imaginary part of the impedance vanishes at a resonant
frequency

ω0 =
√

K/m. (2.39)

If the cochlear fluids were absent and a thin segment of
the membrane were excited directly, it would vibrate with
the greatest amplitude at its resonant frequency ω0. This
observation led Hermann Helmholtz to propose in the 19th
century that each segment of the basilar membrane has a
distinct resonant frequency, which he termed the proper
frequency, with high resonant frequencies near the cochlear
base and successively lower ones toward the apex. In
his pioneering book On the Sensations of Tone Helmholtz
concluded:

‘Consequently any exciting tone would set that part of the
membrane into sympathetic vibration, for which the proper
tone of one of its radial fibers that are stretched and loaded
with the various appendages already described, corresponds
most nearly with the exciting tone; and hence the vibrations
will extend with rapidly diminishing strength on to the adjacent
parts of the membrane. Hence every simple tone of determinate
pitch will be felt only by certain nerve fibers, and simple tones
of different pitch will excite different fibers’.

The material properties of the basilar membrane indeed
vary systematically from base to apex. The radial fibers
that constitute the basilar membrane are thick and short
near the base, conferring a high stiffness, and become
progressively longer, thinner, and more compliant towards the
apex. The stiffness accordingly decays exponentially with
the longitudinal distance from the base (Emadi et al 2004).
The mass associated with a segment of the membrane is more
difficult to measure but may be estimated from the cross-
sectional area of the organ of Corti, which increases toward
the apex. If we assume an exponential variation with distance,
we obtain resonant frequencies that decline exponentially from
base to apex (figure 4(a)). This accords with the characteristic
frequencies of auditory-nerve fibers, that is, the frequencies
at which the fibers are activated most easily, also known as
‘natural frequencies’ or ‘best frequencies’. Nerve fibers that
originate near the cochlear base exhibit high characteristic
frequencies whereas those originating farther apically have
characteristic frequencies that decline exponentially with the
distance from the cochlear base. According to Helmholtz’s
resonance theory the characteristic frequency of an auditory-
nerve fiber reflects the resonant frequency of the basilar-
membrane segment from which it originates.

Quantification of the resonant frequency owing to the
stiffness and mass of the basilar membrane supports this idea.
In the basal turn of the gerbil’s cochlea, for example, a segment
of the basilar membrane 8 µm in length imposes a stiffness of
about 1 N m−1 (Emadi et al 2004). The cross-sectional area of
the organ of Corti at that position is 8000 µm2, which implies
a mass near 60 ng (Richter et al 2000). Because the basilar
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Figure 4. Critical-layer absorption. (a) At each longitudinal
position, the mass and stiffness of the basilar membrane define a
resonant frequency f0. Because the basilar-membrane stiffness
decreases exponentially and the mass increases exponentially from
base to apex, the resonant frequency follows an exponential map
from high frequencies near the base to low frequencies near the
apex. (b) According to the WKB approximation, the
basilar-membrane wave elicited by a single frequency slows upon
approaching the resonant position x0, whereas the amplitude of the
displacement diverges. (c) Numerical solution of a one-dimensional
model confirms the predictions of the WKB approximation. The
wave’s instantaneous displacement is shown as a black line and its
envelope is represented by blue shading. (d) A schematic threshold
tuning curve depicts the frequency tuning of an auditory-nerve fiber
from the high-frequency region of the cochlea.

membrane moves as a rigid beam, however, not all of that mass
oscillates at the maximal basilar-membrane displacement. If
we assume that the moving mass represents half the total mass
of the organ of Corti, we obtain a resonant frequency of about
30 kHz that agrees well with the characteristic frequency of
auditory-nerve fibers from the basal turn. In the middle turn,
about 7 mm from the base, the basilar-membrane stiffness
decreases to about 30 mN m−1 (Emadi et al 2004). The cross-

sectional area of 18 000 µm2, however, exceeds that at the
base (Richter et al 2000). This yields an effective mass
of about 70 ng and a resonant frequency of 3 kHz, again in
good agreement with the characteristic frequencies of auditory-
nerve fibers.

Cochlear hydrodynamics in combination with local
basilar-membrane resonance produces frequency selectivity
that is even sharper than that obtained through the simple
resonance envisioned by Helmholtz. If we rewrite the
impedance Z in terms of the resonant frequency ω0 and ignore
friction we obtain

Z = − iK

ω

(
1 − ω2

ω2
0

)
. (2.40)

The frequency of stimulation ω equals the resonant frequency
at a certain spatial location x0, ω = ω0(x0). Basal to that
position x0 the resonant frequency of the basilar membrane
exceeds the frequency of stimulation. The impedance Z

there accordingly has a negative imaginary part and sustains
a propagating wave. The impedance diminishes, however, as
a wave approaches the resonant position x0. According to the
WKB approximation, the local wavelength as well as the speed

(2.34) then fall in proportion to
√

1 − ω2/ω2
0, vanishing at the

resonant position (figure 4(b)). The amplitude of the vertical

basilar-membrane velocity diverges as 1/
4

√(
1 − ω2/ω2

0

)3
. On

the apical side of the resonant position the impedance has a
positive real part that implies an evanescent wave. Because
its amplitude decays exponentially, the wave cannot progress
much beyond the resonant position.

Viscosity reduces the peak near the resonance and renders
the velocity there finite. An example of a numerical solution
of a one-dimensional cochlear model based on equation (2.30)
and with realistic values for mass, damping, and stiffness
is shown in figure 4(c). Because of viscous damping, the
wave’s peak occurs slightly basal to the resonant position.
The smaller the damping, the larger is the peak displacement
and the closer it approaches the resonant position. In the
following, we refer to the position at which the wave elicited by
a stimulus at a single frequency and of small amplitude peaks
as that frequency’s characteristic place. Alternative terms in
the literature are ‘natural place’ and ‘best place’.

The fluid mechanist James Lighthill (1981) referred to the
combination of a traveling wave with a resonance as critical-
layer absorption. Because the wave slows upon approaching
its resonant position and because its amplitude increases
accordingly, most of its energy is dissipated in a critical layer
around the characteristic position.

A living cochlea exhibits intriguing behavior at the
characteristic position. For stimulation at a low sound-pressure
level, the peak displacement is much larger than that in a
passive cochlea: near the resonant position the impedance
nearly vanishes. This occurs because the ear’s active process
counteracts the effect of viscous damping to enhance the re-
sponse. The membrane’s response becomes highly nonlinear
near the resonance, probably because the system operates close
to a critical point, a Hopf bifurcation (Choe et al 1998, Eguı́luz
et al 2000, Camalet et al 2000, Hudspeth et al 2010). Sec-
tions 4–7 are devoted to an understanding of these processes.
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The sharp decay of the wave’s amplitude apical to its
peak provides precise frequency information. Consider the
response of an auditory-nerve fiber that emerges from a certain
position along the cochlea. One can measure experimentally
the fiber’s tuning curve, that is, the set of least sound-pressure
levels that must be applied at various frequencies to elicit
a criterion response in the fiber (figure 4(d)). The tuning
curve displays a minimum at that frequency for which the
traveling wave peaks at the fiber’s position: at that frequency
the least signal suffices to induce action potentials in the nerve
fiber. Lower frequencies require stronger stimuli to evoke the
criterion response, for the associated traveling waves peak
farther apically and the amplitude at the fiber’s location is
no longer maximal. Higher frequencies, however, produce
no response in the fiber, for the waves never reach the fiber’s
position. Hence the sharp high-frequency cutoff of the tuning
curve reflects critical-layer absorption and provides precise
frequency information.

Recordings have been performed from auditory-nerve
fibers originating at many locations along the cochlea
(Kiang and Moxon 1974, Kiang 1984, Temchin et al
2008a, 2008b). Interestingly, low-frequency fibers, with
characteristic frequencies below 1–2 kHz, have broader shapes
and lack the high-frequency cut-off. This accords with
measurements of basilar-membrane mechanics near the apex,
which have not found a rapid decay of the wave apical
to its peak (Cooper and Rhode 1995, Khanna and Hao
1999a, 1999b, 2000, Zinn et al 2000). Apical to the
middle turn the cross-sectional area of the organ of Corti,
and hence the basilar-membrane mass, does not increase
(Richter et al 2000). Moreover, the stiffness there does not
decline greatly (Naidu and Mountain 1998). It therefore
appears that basilar-membrane resonance and critical-layer
absorption occur only for frequencies higher than a few
kilohertz. Discrimination at low frequencies must then
function through a distinct mechanism that remains elusive.
Understanding frequency discrimination at relatively low
frequencies is of great importance, for most of the information
in human speech occurs at those frequencies. We have
made a theoretical suggestion, which is further described
in section 4.3, for how a low-frequency resonance might
be achieved through mechanical activity by hair cells
(Reichenbach and Hudspeth 2010b).

3. Historical overview of the active process

In 1947 and 1948 the physicist Thomas Gold published three
remarkable papers in which he suggested that the cochlea
amplifies signals through tuned active feedback (Pumphrey
and Gold 1947, Gold and Pumphery 1948, Gold 1948).
Characteristically for Gold’s highly original work in areas
as diverse as neuroscience, astrophysics, space engineering,
and geophysics—‘with a stream of elegant and sometimes
unconventional ideas that his peers acknowledged for their
daring, without always accepting them’ (Pearce 2004)—his
concept of active feedback was initially ignored by the hearing-
research community. Only after the discovery of cochlear
nonlinearity and otoacoustic emission, described below, were
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Figure 5. Quality factor Q. (a) The width of an oscillator’s tuning
curve is inversely proportional to the quality factor Q. (b) In
response to a signal at the resonant frequency that starts at a certain
time t0, an oscillator requires a time proportional to Q to reach a
response close to the maximum.

Gold’s ideas revived and made a cornerstone of cochlear
mechanics.

3.1. Theoretical proposal

How did Gold arrive at the conclusion of an active process in the
inner ear at a time when few electrical or mechanical recordings
from the cochlea were available? Gold pursued the resonance
hypothesis advanced by Helmholtz (1954). Assume that, in
response to a pressure difference p̃, each segment of the basilar
membrane vibrates independently at a velocity Ṽ = �p̃/Z

with the impedance Z given by equation (2.19). Specifying
the sharpness of the emerging resonance by the quality factor
Q = √

Km/ξ , the impedance

Z = ξ

A

[
1 + iQ

(
ω

ω0
− ω0

ω

)]
(3.1)

depends on the stimulus frequency ω only through its ratio to
the resonant frequency ω0.

The vibration velocity Ṽ of an isolated basilar-membrane
segment is maximal at the resonant frequency ω0, for which
it reaches Ṽ = A�p̃/ξ . Lower damping therefore leads to a
larger velocity. Moreover, the velocity decays both for higher
and for lower frequencies ω, and the decrease is stronger the
larger the quality factor Q. The width of the resultant tuning
curve is proportional to the inverse of Q (figure 5(a)).

The quality factor Q also governs the temporal response
of the membrane segment at the beginning or end of a stimulus.
If a pressure oscillating at frequency ω0 starts at time t0, then
the membrane velocity V increases from rest to its maximal
amplitude Vmax according to

V = Vmax
[
1 − e−ω0(t−t0)/2Q

]
eiω0t . (3.2)

The amplitude approaches its steady-state value in an
exponential manner with a time constant of 2Q/w0

(figure 5(b)). After the stimulus ends, the amplitude drops
exponentially with the same time constant.

Two distinct regimes arise. When the quality factor Q is
less then 1/2, the membrane segment is overdamped: viscous
friction is so large that, at the end of a stimulus, the membrane
quickly relaxes to its resting position without oscillation. If
instead Q exceeds 1/2, damped oscillations occur after a
signal ends. Because high values of Q prolong the response,
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Figure 6. Regenerative circuit. (a) The inductance L, resistance R,
and capacitance C form a simple resonant circuit that can detect a
frequency-tuned input voltage Uin. (b) A regenerative circuit applies
feedback, here through an inverting amplifier A, to reduce or even
cancel damping from the resistance.

they might degrade the functioning of the cochlea in the time
domain.

Gold assumed that the cochlea achieves a compromise
between sharp frequency discrimination, which favors a
pronounced resonance manifested by a high quality factor Q,
and a fast response to transients, which requires a low Q value.
But where does the optimal compromise lie, in the overdamped
or underdamped regime of membrane oscillation?

Gold realized that he could estimate the Q value through
psychoacoustic experiments. If each segment of the basilar
membrane were to resonate strongly, with a high value of Q,
its response to a pure tone would accumulate slowly after the
onset of a tone (equation (3.2)). Shorter tones would thus result
in smaller membrane vibration and be harder to detect. Gold
therefore measured the threshold intensities at which human
subjects could detect tones of various lengths. Employing
equation (3.2) he also calculated how the intensity threshold
should depend on the length of the tone for particular values of
Q in the auditory system. By comparing his experimental data
to the theoretical expectations he obtained reliable estimates
for the quality factor Q. The values varied from around 30 for
frequencies below 1 kHz to 300 for 10 kHz, indicating sharp
resonances well within the underdamped regime.

In a subsequent article Gold reasoned that such high values
of Q could not arise in a passive cochlea. The damping of a
basilar-membrane segment moving in liquid, even if estimated
conservatively, should lead to dramatically lower values for
the quality factor in the overdamped regime. How, then, could
the cochlea achieve its high degree of resonance?

Gold drew an ingenious analogy to the regenerative
electronic circuits that had been invented a few decades
earlier (Morse 1925, Horowitz and Hill 1989). These circuits
start from a simple resonator comprising an inductance L, a
resistance R, and a capacitance C in series with an oscillating
input voltage Uin (figure 6(a)). If the input voltage Uin

oscillates at an angular frequency ω, Uin = Ũineiωt + c.c., then
so does the circuit current I = Ĩeiωt + c.c., and both quantities
are related through

Ũin

Ĩ
= iωL + R − i

ωC
. (3.3)

We recognize a resonance in the current at the angular
frequency ω0 = 1/

√
LC; the resonance grows sharper as the

resistance R declines.
Such a circuit may be used in a radio for detecting an

amplitude-modulated signal at a carrier frequency that matches
the resonance. Of course, the signal detection of the device
improves with a sharper resonant peak. Can one, therefore,
lower the circuit’s resistance R below the value specified by
the material properties of the conducting material?

Regenerative circuits achieve this goal through active
feedback. Consider a resonant circuit in which an inverting
amplifier with a subsequent resistance R2 lies in series with
the resistance R (figure 6(b)). If the amplifier provides a gain
G, such that an input voltage U yields an output voltage -GU,
then the circuit’s current I follows from

Ũin

Ĩ
= iωL + R − R2

G
− i

ωC
. (3.4)

The damping is therefore reduced from R to R − R2/G and
vanishes at a critical value of the gain, Gc = R2/R. For a gain
above this critical value, the net damping is negative and the
circuit oscillates spontaneously, that is, in the absence of an
input signal.

Gold noted that the resonant circuit may be viewed as an
electric analogue of a segment of the inner ear. Both systems
detect signals, whether electrical or mechanical, at a specific
frequency. In both cases frequency discrimination is achieved
by resonance and hindered by damping, either through the
circuit’s resistance or through the viscosity associated with
motion of the basilar membrane. If active feedback in a
regenerative circuit can lower and even cancel the resistive
damping, he reasoned, might not the ear have evolved an active
mechanism to counter the viscous drag?

3.2. Otoacoustic emission, nonlinearity, and the Hopf
bifurcation

Based on his analogy to regenerative circuits, Gold (1948)
drew a far-reaching conclusion from his idea of an active inner
ear: ‘If the feedback ever exceeded the losses, then a resonant
element would become self-oscillatory... If this occurred, we
should hear a clear note... It is very tempting to suggest that
the common phenomenon of “ringing of the ear” is frequently
of this origin, and not always a central nervous disturbance...
If the ringing is due to actual mechanical oscillation in the
ear, then we should expect a certain fraction of the acoustic
energy to be radiated out. A sensitive instrument may be able
to pick up these oscillations and so prove their mechanical
origin. This would be almost a conclusive proof of this theory,
as such a generation of sound on any other basis is exceedingly
unlikely’.

Gold did not succeed in measuring the predicted emission
of sound from the ear. A few decades later, however, David
Kemp detected ‘echoes’ from human ears in response to click
stimuli (Kemp 1978). By verifying that these signals were
absent in control subjects who had hearing losses but no
middle-ear deficiencies, Kemp concluded that the acoustic
emissions had their origin within the healthy inner ear. Because
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Figure 7. Schematic diagrams characterizing compressive
nonlinearity. (a) The sensitivity of the basilar membrane is defined
as the membrane’s vertical velocity divided by the applied sound
pressure. For frequencies much below the resonant value f0, the
sensitivity is independent of the pressure and the membrane’s
response is linear. Near the resonant frequency, however, a sublinear
response emerges: the sensitivity at low levels of stimulation can
exceed that at high sound-pressure levels by a thousand times or
more. (b) The membrane velocity near the resonant frequency
depends nonlinearly on the sound intensity for a living cochlea. The
response drops and becomes linear in a dead ear.

oto is Greek for ear, these signals were subsequently named
otoacoustic emissions. Kemp (1981) also recorded such
emissions in the absence of external stimulation. We know
today that these spontaneous otoacoustic emissions can be
measured from most human ears. They arise at a set of
frequencies that is characteristic for a given ear and have
therefore been proposed as a means of biometric identification
(Swabey et al 2009).

Earlier in the 1970s William Rhode discovered a
compressive nonlinearity in the basilar membrane’s response
(Rhode 1971). Measuring from living squirrel monkeys, he
found that the velocity of vibration at the characteristic place
grew sublinearly with the intensity of stimulation (figure 7).
After the death of an experimental animal, the velocity,
especially at low intensities, fell to much lower values. The
membrane’s velocity in the dead cochlea grew linearly with
increasing sound intensity. Even in living animals, the
response to stimulation away from the characteristic frequency
was much lower in amplitude and varied linearly with the
intensity of stimulation.

Rhode’s measurement in the living cochlea of basilar-
membrane vibration greatly enhanced with respect to that in
an impaired cochlea evidenced an active process in the healthy
ear. Because of the difficulty of measuring the tiny, sound-
induced vibrations in living animals, however, confirmation
of Rhode’s measurements came only years later (LePage and
Johnstone 1980, Rhode 1980, Sellick et al 1982, Robles et al
1986). These subsequent observations coincided with Kemp’s
measurements of otoacoustic emissions and with the discovery
of active processes in hair cells (section 4).

How does the nonlinearity arise in the response of the
basilar membrane, and what does it signify? When describing
the hydrodynamics of a passive cochlea in section 2, we
assumed a linear relation between pressure difference and
membrane velocity (equation (2.11)). In many physical
systems such a relation holds for small pressures and velocities,
whereas nonlinearities become important for larger ones. In
the case of the cochlea, however, the acoustic impedance Z

that linearly relates pressure and velocity displays a resonant
frequency ω0 at which its imaginary part vanishes. Its
real part is specified by the damping. If the ear’s active
process counteracts the damping so as to exactly cancel
it, then the impedance and therefore the linear response
vanishes entirely. The basilar membrane’s response to sound
stimulation becomes nonlinear even for small vibrations.

The mathematical field of nonlinear dynamics that can
describe such a situation flowered only in the 1960s and
1970s, when the rise of powerful computers made numerical
investigations feasible. It is accordingly unsurprising that
Gold did not foresee the implications of his ideas concerning
cochlear nonlinearity. Originating in studies of hair-bundle
activity, such a mathematical analysis has more recently
suggested that each segment of the basilar membrane operates
near a Hopf bifurcation (Choe et al 1998, Camalet et al
2000, Eguı́luz et al 2000, Duke and Jülicher 2003, Kern and
Stoop 2003, Magnasco 2003). In the language of dynamical-
systems theory, a bifurcation denotes a qualitative transition
in the behavior of a dynamical system in response to a
graded change in the value of a control parameter (Wiggins
1990, Strogatz 1994). In the instance of the supercritical
Hopf bifurcation, the transition extends from underdamped
resonance to spontaneous oscillation.

What precisely is a Hopf bifurcation and how can it
arise in cochlear mechanics? Equation (2.11) describes the
response of an isolated segment of the basilar membrane to a
pressure difference p. The linear part with the impedance Z

follows from Newton’s equation of motion for the temporal
development of the membrane displacement X:

m∂2
t X + ξ∂tX + KX = Ap. (3.5)

Employing the velocity V = ∂tX we may recast this
second-order ordinary differential equation as two first-order
differential equations:

∂t

(
X

V

)
=

(
0 1

−K/m −ξ/m

) (
X

V

)
+

(
0

Ap/m

)
. (3.6)

In the case of an underdamped oscillation, ξ < 2
√

Km, the
matrix on the right-hand side has two eigenvalues λ and λ̄

that are each other’s complex conjugates. By diagonalizing
the matrix we can find a variable transformation (X, V )T →
(Y, Ȳ )T with a complex variable Y such that the equation takes
the form

∂t

(
Y

Ȳ

)
=

(
ζ 0
0 ζ̄

) (
Y

Ȳ

)
+

(
P

P̄

)
. (3.7)

This is achieved with the eigenvalue ζ = −ξ/(2m) +
i
√

4Km − ξ 2/(2m), the complex variable Y = V/2 + i(KX +
ξV/2)/

√
4Km − ξ 2, and forcing through the transformed

pressure P = Ap
(

1 + iξ/
√

4Km − ξ 2
)

/(2m). The

dynamics may then be described by a single complex equation
for Y :

∂tY = (ζr + iω∗)Y + P. (3.8)

Here we have decomposed the complex eigenvalue ζ into its
real and imaginary parts, ζ = ζr + iω∗, in which ζr and ω∗ are
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real numbers. Nonlinearities can appear through an additional
function fnonlinear(Y, Ȳ ) that depends nonlinearly on Y and Ȳ :

∂tY = (ζr + iω∗)Y + fnonlinear(Y, Ȳ ) + P. (3.9)

The function fnonlinear(Y, Ȳ ) may be represented as a Taylor
series in which the lowest-order terms are quadratic: Y 2, Y Ȳ ,
and Ȳ 2. Cubic terms such as Y 3 or Y 2Ȳ constitute the next
order. One can show that a nonlinear transformation Y → W

exists such that Y and W agree to leading order and that, to
third order, the equation (3.9) is transformed to

∂tW = (ζr + iω∗)W − (ν + iσ) |W |2 W + P ; (3.10)

the parameters ν and σ are real. A constructive proof may be
found, for example, in Wiggins (1990). Note that the quadratic
terms have disappeared, and of the cubic terms only that
proportional to |W |2 W remains. In the absence of forcing, the
equation is therefore invariant under the U (1) transformation
W → Weiφ . If higher-order terms were to be included,
only those that obey this symmetry would be relevant, such
as |W |4 W or |W |6 W .

Let us first discuss equation (3.10) in the absence of
external stimulation, P = 0. Linear stability analysis shows
that the only fixed point of the dynamics, that is the only value
W∗ for which the temporal variation vanishes, is W∗ = 0.
This fixed point is stable for a negative control parameter
ζr < 0. Without an external signal, the membrane segment
rests at that position. For positive values of ζr, however, the
fixed point becomes unstable. When the control parameter ν

is positive, the nonlinear term in equation (3.10) counteracts
the instability of the linear term and leads to a stable limit
cycle with an amplitude

√
ζr/ν and frequency ω∗ − ζrσ/ν.

The amplitude decreases as ζr diminishes and vanishes at the
critical value ζ

(c)
r = 0. This situation represents a supercritical

Hopf bifurcation and equation (3.10) without external forcing
is known as its normal form.

In the vicinity of the bifurcation point ζ
(c)
r = 0

the membrane responds nonlinearly to an applied acoustic
stimulus. Let the pressure P oscillate at an angular frequency
ω∗ and with a Fourier coefficient P̃ . We consider the
membrane’s Fourier coefficient W̃ at the same frequency.
The linear part of equation (3.10) then vanishes and the

nonlinear part yields an amplitude |W̃ | = 3

√
|P̃ /(ν + iσ )|.

The membrane’s displacement and velocity thus increase as
the cubic root of the growing stimulus level, corresponding
to a compressive nonlinearity. The growth exponent of 1/3
closely matches that measured from the cochlea (Ulfendahl
1997; Robles and Ruggero 2001).

Such a nonlinear oscillator also produces distortion.
Consider equation (3.9) for the variable Y and assume only
one nonlinear quadratic term Y 2:

∂tY = (ζr + iω∗)Y + βY 2 + P (3.11)

with a complex coefficient β. Denote by Ṽ (ω) and P̃ (ω)

the Fourier transforms of respectively the oscillator’s velocity
and the applied force. Because the Fourier transform of the

product V 2 is the convolution Ṽ ∗ Ṽ , the Fourier transform of
equation (3.11) is

iωỸ (ω) =(ζr + iω∗)Ỹ (ω) + β

∫ ∞

−∞
dω′Ỹ (ω′)Ỹ (ω − ω′) +P̃ (ω).

(3.12)

If the oscillator is stimulated at two distinct frequencies ω1

and ω2, its linear response has a component at those two
frequencies, Y = Ỹ (ω1)eiω1t + Ỹ (ω2)eiω2t + c.c. The quadratic
nonlinearity, however, elicits a force at additional frequencies.
According to equation (3.12) a force results, for example, at a
frequency ω for which ω′ = ω1 and ω − ω′ = ω2, and hence
at ω = ω1 +ω2. Cubic nonlinearities produce analogous cubic
distortion frequencies such as 2ω1 − ω2 and 2ω2 − ω1.

Such distortion tones actually occur in the cochlea. Their
discovery dates to the Italian baroque violinist and composer
Giuseppe Tartini in the 18th Century. When playing two tones
ω1 and ω2 simultaneously on his instrument, he perceived
linear combinations such as ω2−ω1 and 2ω1−ω2 (Tartini 1754,
1767). Although training and experience were required for
observers to perceive these ‘phantom’ tones, a few composers
have subsequently invoked them in their work (Campbell and
Greated 2002). The distortion tones that can sustain a melody
are not produced by any musical instrument, but result from
the inner ear’s nonlinearity!

Psychoacoustic measurements demonstrated that distor-
tion is particularly prominent during weak acoustic stimulation
(Goldstein 1967), indicating once again that cochlear mechan-
ics is nonlinear at low sound-pressure levels. Indeed, immedi-
ately after Kemp’s discovery of otoacoustic emissions follow-
ing click stimuli, distortion products were measured both as
acoustic signals in the ear canal and as responses of the audi-
tory nerve (Kemp 1979, Kim 1980, Kim et al 1980). To ensure
that distortions were not generated by potential nonlinearities
in the equipment, the two frequencies in these experiments
were supplied to the ear canal through independent oscillators,
amplifiers, and speakers. Because the response of the middle
ear is linear even for high sound intensities, the measured dis-
tortion clearly arose within the cochlea. Direct proof that the
inner ear generates nonlinear distortion came through record-
ings of distortion signals from the basilar membrane (Robles et
al 1991, 1997) and finally from the hair bundles of individual
hair cells (Jaramillo et al 1993, Barral and Martin 2012).

4. Hair cells and hair bundles

A few decades ago the cochlea was viewed as a mechanical
and hydrodynamic system for transmitting acoustic signals
to hair cells that simply interpreted these inputs as electrical
responses. As is apparent from the foregoing discussion,
however, hair cells have proven to make a far more important
contribution to cochlear function. The mechanical activities
of these cells account for the hallmarks of the cochlea’s
active process: amplification, frequency tuning, compressive
nonlinearity, and spontaneous otoacoustic emission. Because
each of these features has a correlate in the behavior of
individual hair cells, in vitro investigations of hair cells from
model organisms have provided valuable insights into the
cochlea’s operation.
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4.1. Structure of the hair cell

Although they vary in their dimensions and appearance, all
hair cells in vertebrate organisms have a common underlying
structure. Each is an epithelial cell with a cylindrical or
flask-shaped cell body and is joined at the perimeter of
its upper or apical surface to a ring of supporting cells.
Derived embryologically from the same precursors as hair
cells, supporting cells provide mechanical anchorage for the
sensory cells and participate in metabolic tasks such as the
uptake of excess K+. In many instances—though woefully not
in the case of the mammalian cochlea—supporting cells can
divide and differentiate to replenish lost hair cells.

Hair cells are not neurons. They originate from a
part of the embryo distinct from those that yield neural
progenitors. Moreover, hair cells lack axons and dendrites,
the characteristic extensions from nerve cells. In several
ways, however, hair cells nonetheless resemble neurons.
They express numerous proteins that are characteristic of
nerve cells but not of epithelia. The surface membranes of
hair cells contain a variety of ion channels that shape the
electrical responses to mechanical stimulation. Finally, the
basal surfaces of hair cells bear specialized chemical synapses.
When excited by mechanical stimulation, a hair cell releases
packets of the neurotransmitter glutamate at these so-called
ribbon synapses. The glutamate activates receptors on the
nerve terminals attached to the hair cell’s base; the ensuing
depolarization excites action potentials. These electrical
signals then propagate along the afferent axons into the brain
to initiate the appropriate behavioral response.

Although the details lie beyond the scope of this review,
it is noteworthy that the cell bodies of hair cells contribute
significantly to the processing of sensory information. In
many receptor organs the interplay of Ca2+ and K+ channels
provides an electrical resonance that tunes hair cells to specific
frequencies of stimulation (Hudspeth and Lewis 1988a, 1988b,
Fettiplace and Fuchs 1999). Furthermore, the release of
synaptic transmitter by a hair cell can be frequency-selective,
providing an additional means of enhancing responsiveness to
specific frequencies (Patel et al 2012).

The defining feature of a hair cell is its mechanoreceptive
organelle, the hair bundle (figure 8). Extending from the
flattened apical surface of a hair cell by as little as 1 µm in
some organisms and by as much as 100 µm in others, the
bundle comprises from about a dozen to over 300 cylindrical
protrusions called stereocilia (Howard and Ashmore 1986,
Tilney and Saunders 1983). This name, which means ‘stiff
hairs’, captures the mechanical essence of these tiny processes.
Each stereocilium consists of a core of parallel actin filaments
that are cross-linked into a rigid fascicle by several proteins
(DeRosier et al 1980, Shin et al 2013). Because the number of
microfilaments declines from hundreds to tens at the tapered
base of the stereocilium, the process is most compliant there.
As a consequence, application of a mechanical force to a
stereocilium perpendicular to its long axis causes the structure
to pivot at its flexible base while remaining largely straight
along its shaft.

The geometrical arrangement of the stereocilia within
a hair bundle is key to the bundle’s operation as a

mechanotransducer. Originating from much smaller microvilli
on the cellular surface, the stereocilia remain packed in a
hexagonal array throughout their development. In every
instance, however, the stereocilia are not of equal length along
each of the three hexagonal axes. Instead, the stereocilia
display a monotonic decrease in length, often by very regular
increments, along one axis. Orthogonal to that axis, all the
stereocilia in each rank are of equal length. With its top
edge beveled like a hypodermic needle, the hair bundle thus
manifests elements of both hexagonal and mirror symmetry.
As we shall see, this configuration plays an important role in
the organelle’s mechanosensitivity.

The cross-sectional configuration of a hair bundle is
correlated with the sensory modality to which the associated
hair cell responds. The sensory organs of the vestibular
labyrinth detect linear and angular accelerations at relatively
low frequencies, from less than a hertz to a few hundred
hertz. The lateral-line organs of fishes and some aquatic
amphibians detect movements of the aqueous environment
over a similar frequency range. The hair bundles in each
of these instances are roughly circular in cross-section. In
contrast, the acoustically responsive hair bundles of birds,
and more strikingly those of mammals, are compressed along
the hexagonal axis running from the tallest to the shortest
stereocilia. In the chicken, the hair bundles sensitive to
the highest frequencies, about 5 kHz, are some 35 files of
stereocilia in width but only eight stereociliary ranks in depth
(Tilney and Saunders 1983). The hair bundles of outer
hair cells in the high-frequency region of the mammalian
cochlea can be 40 stereocilia across but only three rows
deep (Kimura 1966). As discussed below, this arrangement
probably facilitates hearing at frequencies of tens of kilohertz
by reducing the necessity for mechanical stimuli to propagate
through the hair bundle.

At least three types of proteinaceous connections extend
between contiguous stereocilia. Just above their tapers, the
stereocilia of many species display basal links that run along
each of the three hexagonal axes. Shorter horizontal top links
join the stereocilia near their tips, again in all directions. Links
of both types are thought to stabilize hair-bundle structure by
restricting the separation of stereocilia and preventing twisting
motions. The most important connections are tip links, fine
protein filaments that join each stereocilium to the longest
adjacent process (Pickles et al 1984). These links run along
only a single hexagonal axis that corresponds to the bundle’s
plane of mirror symmetry. Each tip link comprises four
cadherin molecules, members of a large family of proteins
responsible for intercellular adhesion. The upper two-thirds
of a link is formed of two parallel cadherin-23 molecules; the
lower third consists of a parallel dimer of protocadherin-15
molecules (Kazmierczak et al 2007). The dissimilar cadherin
molecules are joined at their distal tips, the amino termini, by
Ca2+-dependent intermolecular bonds (Sotomayor et al 2012).

Intact tip links are required for mechanoelectrical
transduction. If the links are severed, for example by exposure
to very low Ca2+ concentrations that destabilize cadherins,
transduction vanishes immediately (Assad et al 1991).
Regeneration of the links accompanies the restoration of
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Figure 8. The hair bundle. (a) A scanning electron micrograph depicts roughly a dozen hair bundles protruding from the apical epithelial
surface of the sacculus, a receptor for seismic vibration and airborne sound in the bullfrog’s ear. Each bundle stands about 8 µm tall. (b) An
individual hair bundle comprises approximately 60 actin filament-filled stereocilia and a single microtubule-based kinocilium, the last
terminating in a bulbous swelling. Note the bundle’s beveled appearance owing to a progression in stereociliary lengths. Microvilli stud the
surfaces of the adjacent supporting cells. (c) A transmission electron micrograph reveals a tip link extending 120 nm between the upper end
of a short stereocilium and the flank of the longest adjacent stereocilium. The insertional plaque at the link’s upper insertion contains
myosin-1c molecules thought to regulate the tension in the link. (d) When the tip of a hair bundle moves by distance X, from the blue
configuration of the two stereocilia to the orange one, the shearing motion x of a stereociliary tip along the adjacent process is roughly
proportional to the ratio of the stereocilia’s separation � to their height H: γ = x/X ≈ �/H. For the anuran hair bundles illustrated in this
figure, γ ≈ 0.14.

mechanosensitivity (Zhao et al 1996, Indzhykulian et al 2013).
Physiological evidence suggests that a pair of transduction
channels occurs at the lower insertion of each tip link, on the top
surface of the shorter stereocilium (Beurg et al 2009). It thus
seems highly probable that each strand of a tip link contacts
a transduction channel, either directly or through one or more
linking proteins, and that hair-bundle deflections are detected
when the link pulls open the channel’s molecular gate.

4.2. Mechanical properties of the hair bundle

Most models for transduction, adaptation, and the other
activities of hair bundles invoke only a single degree of
freedom, the deflection of the bundle’s top along its axis of
symmetry. A hair bundle can, however, move equally well in
the perpendicular direction or at any intervening orientation.
Moreover, each of the stereocilia in a hair bundle is potentially
capable of independent motion. To what extent is the simplified
representation of bundle movement justified?

Each stereocilium is a relatively rigid rod that pivots at
its basal insertion (Crawford and Fettiplace 1985, Howard
and Ashmore 1986). Although the parameter generally
cited in both experimental and theoretical studies is the
lateral displacement of the hair bundle’s top, the tip of
each stereocilium must actually move through an arc.
Here the minute dimensions of hair-bundle movement
justify the simplification. Although a bundle can endure
displacements of a few micrometers (Shepherd and Corey
1994), ordinary stimuli—especially those of high-frequency
auditory receptors—evoke bundle motions on the order of
±30 nm or less. Given that most hair bundles are about 5 µm in
height, a threshold stimulus of ±0.3 nm represents an angular
excursion of only 0.007◦, which corresponds to a deflection of
the Eiffel Tower’s tip by the width of a petite madeleine.

The issue of independent movements by individual
stereocilia is more complex. In most hair bundles, stimulus
forces are applied to the kinocilium at the bundle’s tall edge
and must propagate from there across the array of stereocilia.
The hair bundles of outer hair cells in the mammalian cochlea
are unusual in that the tallest stereocilia in each file are directly
attached to the gelatinous tectorial membrane, so stimulation
delivers force across the bundle’s entire width. The stimuli
must nonetheless travel from the displaced stereocilia to those
of the subsequent, shorter ranks. In every instance there is
likely to be some decrement in the magnitude of stereociliary
displacement deeper in the hair bundle (Silber et al 2004).

Interferometric measurements, analytic calculations, and
finite-element modeling have revealed that the separation of
stereocilia depends critically on the frequency of stimulation
(Kozlov et al 2011). During stimulation at low frequencies,
the elasticity of the stereociliary pivots tends to hold every
stereocilium in its resting position. As a result, each shorter
stereocilium moves somewhat less than its taller neighbor. The
horizontal top connectors between adjacent stereocilia, which
are thought to counter stereociliary separation, likely evolved
to counter this problem. Stereociliary movements at very high
frequencies are instead influenced by inertia. In this regime the
force required to accelerate the stereocilia is great enough that,
when stimuli are applied at a bundle’s tall edge, successively
shorter ranks lag behind their taller neighbors. The tendency
for hair bundles responsive to high frequencies to have only
a few ranks of stereocilia might represent an evolutionary
adaptation to this challenge.

The hair bundle’s most interesting mechanical behavior
occurs during stimulation at the intervening frequencies, the
interval from about 100 Hz to 10 kHz that corresponds broadly
to our range of hearing. Here viscosity plays the leading role
(Kozlov et al 2011). When any stereocilium is displaced by a
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stimulus, its shorter neighbor might move in either of two ways.
It could separate from the taller stereocilium in response to
elastic and inertial forces, a mode that requires sucking liquid
into the nanometer-scale space between the adjacent processes.
The shorter stereocilium could alternatively remain in contact
with the taller at their point of tangency, in which instance
both would pivot about their basal insertions and move in
concert, shearing along each other without separation. The
latter mode in actuality dominates the former, for the drag
coefficient associated with the separation mode is three orders
of magnitude greater than that for the longitudinal shearing
mode. Although the oscillation of a hair bundle in endolymph
inevitably dissipates some stimulus energy, a bundle’s drag
differs little from the Stokes drag on a sphere of comparable
size (Denk et al 1989, Howard and Hudspeth 1988). Viscosity
actually provides an unexpected advantage by holding the hair
bundle together during stimulation. The assumption that a
bundle moves with a single degree of freedom, then, rests on
the evidence that viscosity suppresses stereociliary separation
over the range of audible frequencies.

4.3. Mechanoelectrical transduction

Like other components of the nervous system, a hair cell
employs electrical signals; like other sensory receptors, the
cell uses these signals to represent physical stimuli. When a
hair cell is stimulated by sound, the potential difference across
its surface membrane changes in a graded way dependent upon
the amplitude of hair-bundle motion (Hudspeth and Corey
1977). Threshold stimuli elicit responses estimated at 100 µV,
whereas the largest responses might reach 60 mV in vivo
(Johnson et al 2011).

The electrical response of any sensory cell, the so-called
receptor potential, results from the flow of current through ion
channels in the cell’s membrane. A hair cell is endowed with
mechanically sensitive channels termed mechanoelectrical-
transduction channels. The magnitude and variance of the
transduction current suggests that each cell has relatively few
such channels, on the order of one hundred to a few hundred,
or only a few per stereocilium (Hudspeth 1983, Holton and
Hudspeth 1986). Comparison of a hair cell’s total transduction
current with the current through individual channels suggests
that there are likely two channels at the lower insertion of each
tip link (Beurg et al 2009). Although there is as yet no evidence
of a direct connection between a tip link and the channels, the
fact that a link has twofold symmetry—it is a dimer of protein
dimers—suggests that each of the link’s two strands contacts
a single channel.

The polarity of a hair cell’s response depends upon the
orientation of hair-bundle stimulation. Moving the bundle
toward its tall edge elicits a depolarization, or decrease in the
resting potential, which is approximately −60 mV. Because the
intracellular potential becomes more positive—an excitatory
response—such a movement is defined as a positive stimulus.
Deflecting the hair bundle in the opposite direction, a negative
stimulus, elicits a hyperpolarization: the transmembrane
potential grows increasingly negative. For stimulation along
the axis of mirror symmetry, the relation between displacement

and response is sigmoidal. There is no response when the
bundle is moved at a right angle to the axis of symmetry
(Shotwell et al 1981). Stimulation at other angles produces
a response that varies as the cosine of the deviation from the
axis of symmetry. The bundle thus resolves any stimulus into
two orthogonal components, responding in a graded fashion
to the component in the plane of symmetry but ignoring the
perpendicular component.

The vectorial responsiveness of hair bundles is unimpor-
tant in the auditory system, in which all of the hair bundles are
oriented such that their axes of greatest sensitivity accord with
the direction of mechanical stimulation. Directional sensitiv-
ity plays an important role, however, in the vestibular organs
responsive to linear acceleration, which include the human sac-
culus and utriculus. Here the hair cells lie in two sheets oriented
perpendicular to one another. Within each of these organs, the
hair bundles assume a range of angular orientations spanning
a full 360◦. As a consequence, acceleration of the head in any
direction optimally excites a coterie of hair cells in at least one
of the organs and maximally inhibits another ensemble. Hair
cells of the intervening orientations respond to a lesser extent
or not at all. The responses transmitted from these hair cells
to the brain uniquely determine the magnitude and direction
of acceleration. The labyrinths of the two ears provide largely
redundant information. If their outputs differ, however, for
example because a unilateral infection causes spurious neu-
ral activity, the brain is incapable of resolving the discrepant
information and vertigo ensues.

4.4. The gating-spring model and gating compliance

The opening and closing of a transduction channel can be
described by the gating-spring model, in which it is supposed
that each channel’s molecular gate opens in response to tension
conveyed through an elastic element, the gating spring (Corey
and Hudspeth 1983, Howard et al 1988, Hudspeth 1992,
Markin and Hudspeth 1995a). This spring is in turn tensed
by deflection of the hair bundle in the positive direction and
relaxed by motion in the opposite sense. A channel is supposed
to exist in either of two states, open or closed, and to spend
a negligible time during the transitions between those states.
Each channel’s opening and closing is thought to be stochastic
and independent of that of other channels. In this model, the
energy UO associated with an open channel is

UO = EO +
κGS

2
(γXHB + xC − xA − d)2 , (4.1)

in which κGS is the stiffness of a gating spring, XHB is the
displacement of the hair bundle, and d is the distance through
which the gate moves upon opening (figure 9). EO is the energy
associated with the open channel itself, independent of the
elastic energy in the gating spring represented by the second
term on the right. The parameter γ is a geometric factor that
relates the shear between two adjacent stereocilia—and thus
the extension of the gating spring—to displacement of the hair
bundle’s top (figure 8(d)). xC is the extension of the gating
spring when the hair bundle stands in its undisturbed resting
position; xA represents the extent to which the gating spring
has relaxed as a result of adaptation.
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Figure 9. The gating-spring model of mechanoelectrical transduction. (a) The gating spring (orange) of stiffness κGS represents a tip link
and the mechanically compliant structures in series at both of its insertions. The detachment of the spring from the transduction channel is
entirely hypothetical. (b) When the hair bundle stands in its resting position, the spring extends a distance xC to contact the molecular gate
(blue) of a transduction channel (red) in the stereociliary membrane (green). (c) Deflection of the bundle through a distance X elongates the
spring by an amount γX. (d) If the channel opens, the spring relaxes by a distance d. (e) Finally, movement of the tip link’s upper insertion
during the adaptation process relaxes the spring by an amount xA.

Because the gating spring elongates by a distance d as
the channel shuts, the energy UC associated with the closed
configuration of the channel is

UC = EC +
κGS

2
(γXHB + xC − xA)2 . (4.2)

The energy difference �U upon channel opening therefore
proves to be a linear rather than a quadratic function of hair-
bundle displacement:

�U = UO − UC = �E − κGSd

(
γXHB + xC − xA − d

2

)
= −ZGS (XHB − X0) . (4.3)

Here �E = EO − EC, ZGS = γ κGSd , and X0 subsumes a
combination of the other parameters. The open probability
then follows from the Boltzmann relation,

PO = 1

1 + e−ZGS(XHB−X0)/(kBT )
. (4.4)

This relation (figure 10(a)) fits the experimental data from the
hair cells of numerous receptor organs in a variety of species
(Hudspeth and Corey 1977, Howard and Hudspeth 1988). It
is apparent that X0 represents the hair-bundle displacement
at which the channel’s open probability is one-half. The
parameter ZGS, which describes the sensitivity of gating to
mechanical stimulation, is called the single-channel gating
force: it represents the change in the force at a hair bundle’s
top when a channel opens or closes.

If the open probability of transduction channels depends
upon the tension in a gating spring, it follows by mechanical
reciprocity that the gating of the channels must affect the
tension borne by the spring. Suppose that this force is fO

when the channel is open and fC when it is closed. The time-
averaged force fGS in each gating spring is then

fGS = POfO + (1 − PO) fC = POκGS (γXHB + xC − xA − d)

+ (1 − PO) κGS (γXHB + xC − xA)

= κGS (γXHB + xC − xA) − POκGSd. (4.5)

Because a hair bundle moves as a unit, its N transduction
elements lie more-or-less in parallel. Owing to the mechanical
advantage afforded by the bundle’s geometrical arrangement,
the total force produced by the ensemble of gating springs, as
measured at the top of the hair bundle, is NgfA. The actin
pivots at the bases of the stereocilia, which resist deflection
of the hair bundle from its resting position XSP in the absence
of gating springs, make a contribution proportional to their
combined stiffness KSP. The total external force F required to
deflect a bundle by a distance XHB is accordingly

F = NγκGS (γXHB + xC − xA) − NPOZGS

+ KSP (XHB − XSP) . (4.6)

For large excursions in either direction, this relation is linear
in the displacement XHB. Near the bundle’s resting position,
however, the gating of channels interposes a nonlinearity
between the two linear regimes (figure 10(b)).

When the bundle stands at rest, the extent of adaptation xA

and the hair-bundle deflection XHB are by definition zero. The
resting open probability POR is then set by the opposition of
tension in the tip links and flexion of the stereociliary pivots:

POR = NγκGSxC − KSPXSP

NZGS
. (4.7)

The hair bundle thus resembles a strung bow in which the
tension along the bowstring balances the flexion of the bow
itself.

For frequencies up to several tens of kilohertz, the hair
bundle’s inertia has a negligible effect. When a stimulus fiber
of stiffness KSF and drag coefficient xSF is applied to a bundle
with drag coefficient ξHB and the fiber’s base is deflected by an
amount �, the equation of motion is therefore

(ξSF + ξHB)
dXHB

dt
= KSF (� − XHB)

−NγκGS (γXHB + xC − xA) + NPOZGS

−KSP (XHB − XSP) . (4.8)
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Figure 10. Schematic representations of responses of a hair bundle
to mechanical deflection. (a) The displacement–open probability
relations are determined from the responses of a hair bundle to rapid
deflections from its resting position. The steepness of the relations
depends upon the single-channel gating force; here the values are
ZGS = 0.25 pN (continuous curve) and ZGS = 0.50 pN (dashed
curve). The open probability is 0.5 in the absence of stimulation.
(b) The displacement–force relations for the same parameter values
reveal that a sufficiently large gating force produces a negative slope
stiffness and consequent instability. Each plot depicts the force
applied to a bundle by a stimulus fiber after the hydrodynamic drag
force has vanished and before adaptation has shifted the relation.
The force produced by the hair bundle is equal and opposite to that
shown. For the dashed curve, the bundle has two stable fixed points
(solid dots) and an unstable fixed point (open dot). (c) The hair
bundle’s stiffness approaches a constant value for large excursions
in either direction, but decreases over the range in which channels
open and close as a result of gating compliance. For large values of
the gating force, the bundle’s stiffness actually becomes negative.

Now consider the slope stiffness of the hair bundle, which is
obtained by differentiating the external force F , equation (4.6),
with respect to displacement:

KHB = dF

dXHB
= Nγ 2κGS + KSP − NZGS

dPO

dXHB

= K∞ − NZ2
GS

kBT
PO (1 − PO) . (4.9)

Here K∞ represents the asymptotic stiffness encountered upon
large displacements of the bundle in either the positive or
the negative direction (figure 10(c)). The final term, the
gating compliance, reflects the effect of channel opening and
closing. Gating reduces the stiffness of the bundle near its
resting position, with the greatest effect at PO = 1/2. Most
remarkably, for sufficiently large values of ZGS the gating
compliance can actually confer a negative slope stiffness on
the bundle (Denk and Webb 1992). This behavior, which has
been observed experimentally (Martin et al 2000, Le Goff et al
2005), renders the bundle mechanically unstable and plays a
critical role in the ear’s active process.

Three fundamental aspects of the gating-spring model
remain to be confirmed. First, what is the identity of
the mechanoelectrical-transduction channel in hair cells?
Recent evidence suggests that the transmembrane channel-
like proteins TMC1 and TMC2 are constituents, for variants
of the transduction channel express distinct single-channel
conductances and Ca2+ selectivities (Kawashima et al 2011,
Kim and Fettiplace 2012, Pan et al 2013). Because
mechanically activated currents of reversed displacement
sensitivity persist after knockout of the genes encoding TMC1
and TMC2, however, it remains possible that those proteins
are necessary to position some other channel molecules (Kim
et al 2013).

A second issue is the relationship between the two
transduction channels thought to reside at the base of each tip
link. Can those channels gate independently of one another,
or if not, do they exhibit positive or negative cooperativity that
would require modification of the gating-spring model (Markin
and Hudspeth 1995a)? Electrical recordings from hair cells
demonstrate apparent single-channel currents (Ricci et al 2003,
Pan et al 2013), but it remains possible that each opening event
represents the activation of two highly synchronized channels
and that the lower-conductance states observed occasionally
(Crawford et al 1991) actually correspond to the gating of
individual channels.

A final uncertainty lies in the identity of the gating spring
itself. The gating-spring theory was originally proposed as an
abstract model meant to explain the kinetics of transduction-
channel gating (Corey and Hudspeth 1983). Although the
subsequent discovery of the tip link offered an attractive
candidate for the gating spring (Pickles et al 1984), evidence
from electron microscopy and molecular modeling suggests
that the link’s cadherin chains are too stiff to serve in that
role (Kachar et al 2000, Sotomayor et al 2012). Moreover,
high-resolution measurements of thermally driven hair-bundle
movements associate complex viscoelastic behavior with the
gating springs (Kozlov et al 2011). It is possible that there is
significant compliance at the upper insertion of each tip link,
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Figure 11. Schematic diagram of the inferred mechanism of slow adaptation by hair cells. From left to right, the schematic diagrams at the
center portray a hair bundle at rest, shortly after the onset of a force pulse (blue arrow) in the positive direction, and after the completion of
slow adaptation. The transduction channels at the bases of the tip links are initially closed, but open during stimulation in response to the
shear between adjacent stereocilia. As the insertional plaques at the upper insertions of the tip links slide downward (green arrowheads),
however, the tension in the links declines and most of the channels reclose. The electrical response portrayed at the bottom accordingly
manifests a transient peak of inward current, which is negative in sign, followed by a roughly exponential decline during adaptation. As
shown at the top, the bundle’s displacement in response to a constant force displays a progressive relaxation in the positive direction during
the adaptation process.

where myosin-1c molecules help to anchor the link to the actin
cytoskeleton (Howard and Spudich 1996). Perhaps more likely
is flexibility at the lower end of the tip link, where electron
microscopy often reveals the membrane at the stereociliary
tip to be elevated into a ‘tent’, apparently by tension in the
tip link (Powers et al 2012). In keeping with this hypothesis,
certain adaptive properties of hair bundles (see below) are well
fit by a model including a compliant element whose stiffness
depends on the intracellular Ca2+ concentration just inside each
transduction channel (Bozović and Hudspeth 2003, Martin
et al 2003).

4.5. Slow adaptation by hair bundles

The narrow operating range of the hair cell’s transduction
process poses a problem: how does the cell avoid saturation of
its responses when confronted with stimuli that deflect the hair
bundle far in the positive or negative direction? Many sensory
systems adapt to sustained stimulation. The photoreceptors
of the visual system, for example, implement gain control
through feedback in a complex biochemical cascade. Because
mechanoelectrical transduction by hair cells is direct, however,
that strategy is inappropriate; hair cells have instead evolved a
novel, mechanical form of adaptation.

Adaptation is apparent when one records a hair cell’s
electrical response during a protracted deflection of the hair
bundle in the positive direction. The cell immediately

undergoes a depolarization, which relaxes toward the baseline
level over a few tens of milliseconds (Eatock et al 1987). A
common experimental procedure is to voltage-clamp the cell,
using negative feedback to hold the membrane potential at
a constant level while monitoring the transmembrane current.
Adaptation then appears as a time-dependent diminution in the
initial influx of cations through the transduction channels. This
approach resolves two components of adaptation: the first,
fast adaptation, occurs within a millisecond or so; the second,
slow adaptation, displays a time constant for approximately
exponential relaxation of several tens of milliseconds (Howard
and Hudspeth 1987, Wu et al 1999, Kennedy et al 2003).

Slow adaptation is thought to result from resetting the
lengths of tip links to raise or lower the tension that they
bear (Howard and Hudspeth 1987; Assad and Corey 1992,
Hudspeth and Gillespie 1994, Gillespie and Cyr 2004). In this
formulation, the upper insertion of each tip link is attached
to a molecular motor, the insertional plaque, that runs along
actin tracks in the taller stereocilium of the pair (figure 11).
The motor strives continually to ascend, but stalls at some
point owing to the tension that it develops in the attached
tip link. The same tension maintains the open probability
of the associated transduction channels at a nonzero resting
value (equation (4.7)). When the hair bundle is deflected in
the positive direction, the shearing motion between adjacent
stereocilia increases the tension in the tip links. Additional
transduction channels open transiently, but the molecular
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motor then slips down the stereocilium and some channels
reclose—the process of adaptation. Because the rate of
adaptation in this direction depends upon the extracellular
concentration of Ca2+ and the transmembrane potential that
governs the ion’s influx (Assad et al 1989, Hacohen et al 1989),
Ca2+ may speed adaptation by entering stereocilia through
open transduction channels and facilitating the downward
sliding of the motors. A negative stimulus has the inverse
effect: deflection of the hair bundle by a stimulus force relaxes
the tip link transiently, closing the channels; within a few
tens of milliseconds, however, the motor ascends, restores the
tension, and reopens some of the channels. Adaptation in either
direction has the valuable property of restoring a hair bundle’s
mechanosensitivity and thus averting a saturated response.

To model the process of slow adaptation, suppose that
the upper insertion of each tip link is subject to two opposing
forces. The tension in the link, which reflects the hair
bundle’s deflection, tends to pull the insertion downward.
The opposing, upward force is contributed by a molecular
motor that consumes the biological energy source adenosine
triphosphate (ATP). The motor’s activity is sensitive to the local
Ca2+ concentration, which in turn depends upon the ion’s influx
through the transduction channels. The extent of adaptation
xA, which corresponds to downward motion of the tip-link
insertion along the stereocilium, then evolves according to a
relation such as (Assad and Corey 1992, Nadrowski et al 2004,
Fredrickson-Hemsing et al 2012)

ξA
dxA

dt
= κGS(γXHB + xC − xA − POd) − (1 − PO) fM.

(4.10)

Here fM is the force produced by an active adaptation motor
and ξA is a phenomenological drag coefficient that arises from
the kinetics of the motor, whose constituent myosin molecules
attach and detach from the underlying actin filaments at
velocity-dependent rates. The greater the open probability and
ensuing Ca2+ concentration in the stereociliary cytoplasm, the
less force is produced by myosin and the more rapidly tip-link
tension effects adaptation.

Several lines of evidence support this model of adaptation.
First and foremost, the reclosure of transduction channels
during adaptation to a positive stimulus is accompanied by
a mechanical relaxation of the hair bundle (figure 11). This
behavior is thought to reflect the falling tension in tip links as
the associated insertional plaques descend. As anticipated if
molecular motors are involved, adaptation is blocked upon the
removal of ATP or its replacement by nonhydrolyzable analogs
(Gillespie and Hudspeth 1993). A similar effect ensues upon
infusion into the cytoplasm of phosphate, a product of ATP’s
hydrolysis, or related ions (Yamoah and Gillespie 1996).

Stereocilia contains several forms of myosin, the only
motor protein known to operate along actin filaments.
Mutation of myosin-7a in mammalian hair cells perturbs
transduction by displacing the range of hair-bundle positions
at which channels open far positive to the bundle’s resting
position (Kros et al 2002). This isozyme might participate
in adaptation or could represent the extent spring thought
to hold each insertional plaque near its resting position

(Yamoah and Gillespie 1996). In the hair bundles of frogs,
myosin-1c clusters at the expected site of adaptation, the
insertional plaques at the upper ends of the tip links (Garcı́a
et al 1998, Steyger et al 1998). Site-directed mutation of
this myosin isoform indicates that it is both necessary and
sufficient for normal adaptation. Myosins of class 1 possess
several properties that render them particularly suitable for the
adaptation apparatus (Batters et al 2004a). In particular, they
cling tenaciously to actin filaments when subjected to stalling
forces, a useful feature for the maintenance of tip-link tension
(Greenberg et al 2012). Consistent with the requirements of
the model, these isoforms additionally display sensitivity to
Ca2+, reducing their attachment lifetime with an increase in
the ion’s concentration (Adamek et al 2008, Lewis et al 2012).
Finally, myosins-1 exhibit a two-step working stroke in which
back-and-forth transitions between bound states might provide
rapid force steps (Veigel et al 1999, Batters et al 2004b).

Although experimental results accord well with the model
of slow adaptation, no experiment has yet proven that the upper
insertions of tip links actually migrate during the process. The
expected movements are quite small: owing to the geometrical
gain of the hair bundle, slow adaptation to a huge stimulus
of 500 nm is expected to involve a displacement of the tip
link’s insertion along the stereocilium of only 55 nm or so.
Detecting such a motion by confocal microscopy might be
possible, but challenging; recently developed superresolution
techniques should suffice.

Experimental measurements have confirmed the capacity
of adaptation to shift the displacement–force relation of a hair
bundle (Le Goff et al 2005). This phenomenon can explain the
bundle’s ability to amplify at least low-frequency mechanical
stimuli. As a hair bundle oscillates in response to stimulation,
adaptation continuously offsets its range of negative stiffness
(figure 12). As a consequence, the hair bundle does not act as
a linear elastic element; instead, the moving bundle displays a
phase lead with respect to the stimulus and does work not only
against hydrodynamic dissipation but also against the stimulus
fiber itself (Martin and Hudspeth 1999).

4.6. Fast adaptation by hair bundles

As its name implies, slow adaptation serves principally to
immunize mechanoelectrical transduction against static and
low-frequency hair-bundle deflections that would otherwise
saturate responsiveness. Less clear is the significance of
fast adaptation, which was characterized initially under the
descriptive term Ca2+-dependent channel reclosure. Although
this process may also have an adaptive function, an intriguing
possibility is that it contributes to the hair cell’s active process
at frequencies exceeding those accessible to myosin-based
motility.

Fast adaptation involves the reclosure of transduction
channels and a concomitant diminution in the transduction
current on a millisecond or sub-millisecond timescale (Howard
and Hudspeth 1987, Kennedy et al 2005). In association with
this electrical phenomenon, the hair bundle displays a biphasic
mechanical response, first moving in the positive direction and
then twitching in the opposite direction (Benser et al 1996).
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Figure 12. Modeling the role of adaptation in amplification by the
hair bundle. (a) When a piezoelectric stimulator deflects the base of
a flexible glass fiber sinusoidally with an amplitude of 1 nm (top
trace), the hair bundle attached to the fiber’s tip undergoes an
amplified and somewhat distorted oscillation with an amplitude of
7 nm at its characteristic frequency of 41 Hz (second trace). The
motion of the fiber and bundle through the aqueous medium is
retarded by hydrodynamic drag (third trace). The elastic elements of
the hair bundle—the gating springs and stereociliary pivots—exert a
force (fourth trace) that opposes this drag. Although the stimulus
fiber entrains the hair bundle’s motion, the fiber actually provides a
force (fifth trace) oriented in a direction opposite to the bundle’s
movement. (b) During each cycle of oscillation, the
displacement–force relation of the hair bundle migrates
back-and-forth as a result of adaptation. Here the relation is shown
in eight successive positions separated in phase by 45◦ and depicted
in progressively paler shades of gray, starting from the top. Because
these curves display the force exerted by the hair bundle against an
external load, they are opposite in sign with respect to the
displacement–force relations in figure 10(b). Plotting the force
owing to hydrodynamic drag against the hair bundle’s position
yields the blue curve, which encloses an area proportional to the
energy dissipation per cycle. The red curve, which represents the
force provided by the hair bundle’s elastic components, bounds an
area representing the energy supplied by the active process during
each cycle. The points along this curve show the forces applied at
the eight indicated positions of the displacement–force relation.
Note that the circulations in the two curves are of opposite directions
(arrows), reflecting dissipation by drag and energy input by
adaptation. Because the force delivered through the elastic elements
nearly cancels that owing to dissipation, the displacement–force
relation for the stimulus fiber shown by the orange curve
encompasses only a small area, which represents the work done over
a cycle by the stimulus fiber. To achieve the same oscillation in the
absence of the active process, the fiber would need to supply a far
greater energy equivalent to that lost to hydrodynamic friction.

The effect is graded in intensity, initially growing with an
increase in the stimulus amplitude, but non-monotonic: for
hair-bundle deflections exceeding about 40 nm, the response
declines progressively to zero. The maximal amplitude of the
twitch in hair cells from the frog is approximately 20 nm, but
the value might be even greater in the larger bundles of the
mammalian cochlea. Taking into account the geometrical gain
factor γ relating tip-link extension to hair-bundle movement,
this value implies a displacement at the tip links of only
3 nm. Excursions of this sort are typical of the steps made
by molecular motors.

The key uncertainty about fast adaptation is whether it
actually requires an explanation. When a frog’s hair bundle
is abruptly displaced into its region of dynamical instability, it
leaps to a new fixed point as rapidly as viscous drag permits.
The bundle’s subsequent relaxation during slow adaptation
then results in the characteristic waveform described above
(Tinevez et al 2007). If this mechanism proves ubiquitous
then fast adaptation may be explained by the combination
of gating compliance, which imposes a dynamic instability,
and slow adaptation, which poises the bundle on the brink.
Repriming the system for each cycle of activity would then
proceed at the relatively slow pace of myosin-based movement.
This mechanism would pose a conundrum, however, for the
process must do at least some work on a cycle-by-cycle basis to
amplify inputs. Could myosin-1c or any other myosin isozyme
accomplish this at frequencies approaching 100 kHz?

An alternative possibility is that fast adaptation represents
a specialized and perhaps unique form of cellular motility.
The slow steps in myosin activity include the binding of ATP
and especially the docking of myosin’s bulky head to an actin
filament. If myosin’s head were to remain fixed to the filament
on a short timescale, however, successive cycles of activity
could occur at a much shorter latency. In this model the
myosin head would simply rock back-and-forth to accomplish
amplificatory work. Exactly this occurs in the flight muscles
of insects, which can operate at frequencies exceeding 1 kHz
(Pringle 1967). Oscillation would be further accelerated if
the energy of amplification were not supplied by ATP, whose
stereospecific binding is inevitably prolonged, but stemmed
instead from the binding of Ca2+. Ions entering through
a transduction channel might swiftly bind to a protein that
regulates myosin’s activity, such as calmodulin, or perhaps
to another protein altogether. This binding would evoke a
reconfiguration of the relaxation element that would pump
energy into the hair bundle’s motion (Choe et al 1998, Bozović
and Hudspeth 2003). The process would ultimately draw its
power from ATP, which would maintain the Ca2+ gradient
through the activity of the Ca2+ pumps that densely stud the
stereociliary membrane (Yamoah et al 1998). Note that no
single pump molecule would be required to keep pace with
motility on a cycle-by-cycle basis; instead, a large ensemble
of pumps would cooperate to maintain the time-averaged Ca2+

concentration in the stereociliary cytoplasm at a suitably low
level.

There is no evidence regarding the identity of the putative
relaxation element responsible for fast adaptation. Proteins
such as the spasmin of Vorticella possess the hypothesized
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property of changing conformation rapidly in response to Ca2+

binding (Amos et al 1975, Misra et al 2010), but no candidate
substance with this property has been identified at stereociliary
tips. Moreover, Ca2+ may not be required for fast adaptation in
mammalian cochlear hair cells (Peng et al 2013). Owing to the
submillisecond time scale of fast adaptation and its restricted
displacement range of only a few nanometers, experimental
measurement of the molecular rearrangements involved is even
more problematical than for slow adaptation.

4.7. Spontaneous oscillations of hair bundles

When hair bundles operate in the intact ear, they are almost
always loaded by accessory structures, such as tectorial or
otolithic membranes, that convey mechanical stimuli to the
bundles. After having been separated from their accessory
structures by enzyme treatment, hair bundles in vitro may
oscillate spontaneously (Crawford and Fettiplace 1985, Martin
et al 2003). The phenomenon is especially prevalent when the
isolated receptor organ is maintained in a two-compartment
experimental chamber so that the cellular surfaces are bathed
in physiologically appropriate media, namely endolymph for
the apical surfaces and perilymph for the basal ones (Martin
and Hudspeth 1999, Strimbu et al 2010). The hair bundles
from the extensively studied sacculus of the bullfrog oscillate at
frequencies of a few tens of hertz and with amplitudes of several
tens of nanometers. The oscillation waveforms vary widely,
from small sinusoidal motions to large, biphasic relaxation
oscillations.

With a suitable choice of parameter values, a model
comprising equation (4.8) and equation (4.10) provides
realistic simulations of spontaneous hair-bundle oscillations
(Bozović and Hudspeth 2003, Martin et al 2003, Nadrowski
et al 2004, Fredrickson-Hemsing et al 2012). The
model successfully encompasses the effects of experimental
alterations in the stiffness load on a bundle, the offset
from the bundle’s resting position, or the extracellular Ca2+

concentration. The phase space of the model system
displays regions of monostability and bistability as well
as a locus of spontaneous oscillation bounded by Hopf
bifurcations (Nadrowski et al 2004, Ó Maoiléidigh et al 2012).
Because parts of the phase space can be parameterized by
experimentally accessible variables such as the elastic load
and offset displacement imposed on a hair bundle (figure 13),
it should be possible to test how well the model captures the
behavior of actual hair bundles.

Although the accessory structures normally attached to
hair bundles are soft protein gels, their stiffness is of the
same order of magnitude as that of hair bundles (Benser
et al 1993). As a consequence, the spontaneous oscillation
of hair bundles is largely suppressed in vivo (Strimbu et al
2010). This observation suggests that the relatively large,
low-frequency oscillations observed for unencumbered hair
bundles in vitro are an artifact of the recording situation.
Working against the elastic load of accessory structures, native
hair bundles may instead operate well to the right in the phase
diagram, near the head of the fish-shaped locus of spontaneous
oscillation (figure 13). Bundles are thought to use an as yet
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Figure 13. Phase diagram for the behavior of a hair bundle. The
parameters of the analysis are the elastic load on the hair bundle,
including both the bundle’s internal stiffness and that of an attached
stimulus fiber, and the force with which the bundle is offset from its
resting position. Within the region of spontaneous oscillation,
movement to the right is associated with progressively smaller
oscillations of progressively increasing frequency. Bautin points
(yellow squares) mark the transitions between supercritical and
subcritical Hopf bifurcations.

uncharacterized feedback to hold themselves at the brink of
criticality (Camalet et al 2000). Because the rate and amplitude
of spontaneous oscillation are influenced by drugs that affect
the cytoplasmic concentration of the second messenger cyclic
adenosine monophosphate (cAMP), this adjustment might
involve protein phosphorylation (Martin et al 2003).

Spontaneous hair-bundle oscillations seem a likely source
of spontaneous otoacoustic emissions. Nonmammalian
tetrapods display from as few as one to more than ten emission
peaks (Manley 2006). Although it is not yet possible to
demonstrate how many hair cells contribute to each peak,
the upper bound set by dividing the number of cells by the
number of emission peaks ranges from a handful to a hundred
(Manley and Gallo 1997, Gelfand et al 2010). Modeling
indicates that multiple hair cells can be mutually entrained
in their oscillations through either viscous or elastic coupling
between adjacent hair bundles (van Hengel et al 1996, Vilfan
and Duke 2008, Gelfand et al 2010, Braun 2013).

The energy dissipation associated with spontaneous
emission is surprisingly small. In the Anolis lizard, for
example, each hair cell sensitive in the range 1–8 kHz has
an emission power of about 140 aW, or some 20–140 zJ per
cycle of oscillation (Manley and Gallo 1997). The hair bundle
of such a cell possesses about 40 tip links, and therefore
that number of motors, each of which is estimated to contain
about 50 myosin-1c molecules (Gillespie et al 1993). With
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an efficiency of 50%, the hydrolysis of an ATP molecule by
a single myosin molecule liberates about 40 zJ. It is apparent
that, even if a given myosin molecule were active only once
in every several cycles, the ensemble could readily supply the
power necessary to sustain the observed emissions.

4.8. Somatic motility of outer hair cells

An epithelium characteristically rests upon a firm foundation
of connective tissue. The auditory receptor organ of a reptile
or mammal is unusual in that its underpinnings have been
greatly attenuated, leaving only a thin cellular layer suspended
between two liquid-filled chambers. This configuration may
have evolved because separation of the basilar membrane from
the bone and cartilage of the skull produced a structure capable
of resonating at different frequencies along its length, and thus
of superior frequency resolution. At the same time, however,
the development of a resonant basilar membrane posed a
challenge: how might the active process that had arisen to
amplify the activity of individual hair bundles drive a far larger
structure, the entire basilar membrane and sensory epithelium?
At least in mammals, and perhaps in other taxa as well (Beurg
et al 2013), evolution apparently solved this problem through
the development of a second component of the active process,
somatic motility or electromotility.

Somatic motility is a prominent property of the specialized
outer hair cells that are unique to mammals (Brownell et
al 1985, Ashmore 1987, 2008). These long, cylindrical
cells have a minimum of intracellular organelles; they also
possess few synapses by which to transmit information to
nerve fibers. Outer hair cells are instead specialized for
mechanical amplification. The surface membrane of each cell
is loaded with millions of molecules of the protein prestin, a
modified anion transporter that has assumed an amplificatory
role (Zheng et al 2000).

Prestin is a piezoelectric transducer. Upon changes in the
potential across the membrane, the tetrameric protein alters its
configuration in the plane of the membrane (Zheng et al 2006,
Wang et al 2010, Hallworth and Nichols 2012). Depolarization
causes the molecule’s area to decrease, and as a consequence
the cell shortens. Hyperpolarization instead increases prestin’s
membrane area and evokes a cellular elongation. Because
the volume of a hair cell is conserved on the short timescale
involved in high-frequency transduction, the cellular radius
undergoes converse changes in both instances.

The voltage sensitivity of prestin reflects the movement
of charged components of the protein in the electrical field
across the membrane. With the simplifying assumption that
the protein has only two states, compact and extended, the
probability PE of occupying the latter state and hence of
cellular elongation is

PE = 1

1 + e−zPe(V −V0)/kBT
, (4.11)

in which zP is the gating valence associated with movement of
prestin’s voltage sensor, e the electron charge, V the membrane
potential, and V0 the potential at which the probability of
extension is one-half. As a result of this charge movement,

the total membrane capacitance COHC of an OHC depends
nonlinearly on the membrane potential:

COHC = CL +

(
NPz

2
Pe

2

kBT

)
e−zPe(V −V0)/kBT[

1 + e−zPe(V −V0)/kBT
]2

= CL +

(
NPz

2
Pe

2

kBT

)
PE (1 − PE) , (4.12)

in which CL is the linear component owing primarily
to membrane lipids and NP is the number of prestin
molecules. Consistent with this formulation, plots of
membrane capacitance against potential reveal the expected
symmetrical, bell-shaped relation (Santos-Sacchi 1991).

Two aspects of somatic motility are particularly important.
First, this motile process is remarkably fast. Outer hair
cells can follow sinuosidal voltage changes to frequencies
approaching 100 kHz, near the upper limit of mammalian
hearing (Frank et al 1999, Scherer and Gummer, 2004). By
contrast, a myosin-based phenomenon such as slow adaptation
can probably operate to only a few kilohertz. The second key
feature of somatic motility is the relatively large force that it
produces. Whereas active motility by a hair bundle can exert
a force of 10 pN or so, the motile soma of an outer hair cell
exhibits a piezoelectrical responsiveness of 100 nN V−1, and
can thus provide several nanonewtons for receptor potentials
in the range of a few tens of millivolts (Iwasa and Adachi
1997). This feature is critical for the mechanical amplification
of basilar-membrane motion: at high frequencies, somatic
motility is apparently necessary to counter both the inertia of
the basilar membrane and organ of Corti and the hydrodynamic
drag on and within those moving structures (Ó Maoiléidigh and
Jülicher 2010, Meaud and Grosh 2011).

An important topic of contemporary research is the
relationship between the two components of the active
process. One possibility is that somatic motility has simply
supplanted active hair-bundle motility in high-frequency
hair cells. When somatic motility is blocked, however,
significant manifestations of the active process persist (Chan
and Hudspeth 2005a, 2005b, Fisher et al 2012). Moreover,
somatic motility lacks the strikingly nonlinear features of the
active process—features that are demonstrably associated with
active hair-bundle motility. It is most likely that the two
mechanisms of motility collude in the active process. Somatic
motility delivers most of the mechanical power that drives the
basilar membrane (Meaud and Grosh 2011, Ó Maoiléidigh and
Jülicher 2010), whereas active hair-bundle motility helps to
overcome the principal problem associated with piezoelectrical
responsiveness, the membrane time constant. Prestin responds
to changes in membrane potential, which in turn depend upon
the flow of current through transduction channels. As the
frequency of stimulation increases, a progressively greater
current is required to alter the membrane potential with suitable
rapidity. Numerous proposals have been advanced to explain
how the problem posed by the membrane’s time constant
might be overcome. Perhaps the most probable explanation,
however, is that the mechanical amplification provided by
active hair-bundle motility augments the transduction current
at high frequencies, thus extending the range of somatic
motility (Ó Maoiléidigh and Hudspeth 2013).
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4.9. Noise and the hearing threshold

A important corollary of the auditory system’s great sensitivity
is vulnerability to thermal noise. It is instructive in this regard
to compare hearing to vision. The photoisomerization of 11-cis
retinal, the chromophore that initiates the visual response,
requires some 220 zJ or almost 55 kBT (Yau et al 1979). A
single photon of wavelength 505 nm, the peak of sensitivity
for rod photoreceptors, delivers an energy of 390 zJ or over
95 kBT at room temperature. It follows that a photon can
reliably evoke a photoisomerization, and more importantly
that the mean lifetime of a rhodopsin molecule before thermal
isomerization—and a consequent false-positive signal—is
around a thousand years! The triggering of a response
in a photoreceptor is therefore a reliable indication that a
photon has been captured, so a person can report the nearly
synchronous arrival of as few as five photons (Hecht et al 1942).
In the auditory and vestibular systems, by contrast, classic
psychophysical experiments demonstrated that threshold
inputs, which must be divided among numerous hair cells,
have a total energy content only a few tens of times the level of
thermal energy (de Vries 1948, 1949, Sivian and White 1933).

Different kinds of noise occur in the auditory periphery.
The Brownian motion of air molecules causes pressure
fluctuations at the eardrum, for example, and the thermal
excitation of water molecules in the cochlea buffets the
basilar membrane (Harris 1968). The transduction process by
which hair bundles respond to mechanical vibrations and the
components of the cochlear active process are noisy as well.
These processes limit the perception of low-intensity stimuli
and can influence the cochlea’s nonlinear behavior.

Because most significant sounds are sinusoidal in
character and of many cycles’ duration, the auditory system
can achieve its great sensitivity in part through the resonant
averaging of its inputs. Frequency tuning is obviously
useful for the identification of sound sources and speech
sounds through the analysis of their frequency spectra. A
second, less apparent advantage of tuning is the suppression
of noise: a sharply tuned resonator responds best at its
natural frequency but rejects noise outside its passband.
The prevalence of tuning emphasizes the importance of this
consideration in auditory systems, which employ at least seven
strategies. As already discussed extensively, the resonance
of the basilar membrane owing to its mechanical properties
makes a major contribution to tuning. In the auditory organs
of some amphibians, and probably in the mammalian cochlea,
mechanical resonance also occurs in the tectorial membrane
(Hillery and Narins 1984, Gummer et al 1996, Cai et al
2004, Ghaffari et al 2007). The damped mechanical resonance
of individual hair bundles constitutes another contribution to
frequency selectivity (Frishkopf and DeRosier 1983, Holton
and Hudspeth 1983, Aranyosi and Freeman 2005). Indeed,
in many ears there is a gradient in the mass and stiffness
of bundles along the tonotopic axis on which frequency is
represented. Another strategy employed by some hair cells,
stochastic resonance of hair bundles, actually takes advantage
of noise to promote sensitivity to a specific frequency of
stimulation (Jaramillo and Wiesenfeld 1998). Active hair-
bundle motility is clearly tuned, though as yet we remain

unsure of the mechanism by which this is accomplished
(Martin et al 2001). After transduction has occurred, the
membrane potentials of many hair cells display electrical
resonance owing to the interplay between voltage-activated
Ca2+ channels and Ca2+-sensitive K+ channels (Crawford and
Fettiplace 1981, Hudspeth and Lewis 1988a, 1988b). In
this instance the cells are tuned by gradients in the number
of channels, their incorporation of accessory subunits, and
their sensitivity to Ca2+ and voltage (Art and Fettiplace 1987,
Rosenblatt et al 1997, Miranda-Rottmann et al 2010). Finally,
in a mechanism unprecedented in the nervous system, even the
chemical synapses by which hair cells transmit signals to nerve
fibers are frequency-selective (Patel et al 2012). Although it is
improbable that any auditory receptor organ employs all seven
of these strategies, many are known to use several as a series
of cascaded frequency filters.

The root-mean-square motion of a free, passive hair
bundle is of the order of 3 nm (Denk et al 1989, Jaramillo and
Wiesenfeld 1998), a value in agrement with the expectation
from the equipartition relation for a bundle of an observed
stiffness around 500 µN m−1 (Hudspeth 1989, Svrcek-Seiler
et al 1998). This magnitude of vibration is well in excess
of the likely theshold for the effective transduction of stimuli
(Martin and Hudspeth 2001). In an intact ear, however, the hair
bundles of most receptor organs are coupled together through
tectorial or otolithic membranes whose reactive impedance
is comparable to the stiffness of a hair bundle (Benser et al
1993, Strimbu et al 2009, 2010, 2012). Because energy can
be transferred between cells by this means, the thermal noise
of individual hair bundles is attenuated by averaging across a
population of bundles.

Application of the fluctuation-dissipation relation reveals
that an active hair bundle operates far from thermodynamic
equilibrium (Martin et al 2001). At least for low-frequency
responses, however, the activity of a bundle is Markovian
and accords with a generalized fluctuation–disipation theorem
(Dinis et al 2012). When detached from a tectorial or otolithic
membrane, such a bundle shows erratic movements that grade
smoothly into noisy limit-cycle oscillations (Denk and Webb
1992, Martin et al 2003). A detailed analysis of the sources
of bundle noise suggests that the clattering of transduction
channels between their open and closed states dominates the
contributions of adaptation motors and of the viscous medium
around the hair bundle (Nadrowski et al 2004). Moreover, this
theoretical work indicates that the presence of noise affects
the optimal operating point for a hair bundle in the state space
defined by the maximal force of adaptation motors and the Ca2+

sensitivity of the adaptation process. At least by the criterion
of sensitivity to small stimuli, a bundle should reside near the
middle of the locus of spontaneous oscillation rather than along
the line of Hopf bifurcations (Nadrowski et al 2004, Han and
Neiman 2010). Noise also disrupts the phase coherence of a
bundle’s response to periodic stimulation (Roongthumskul et
al 2013), an effect that is minimized at a similar operating point.
Mechanical coupling of hair bundles, as would be expected to
occur in vivo, should mitigate the effects of noise (Dierkes et al
2008, Barral et al 2010).

In a model of active hair-bundle motility, noise has the
effect of renormalizing the linear response function while
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preserving its functional form (Jülicher et al 2009). To
appreciate the effect of noise near threshold, consider a system
described by the normal form of the Hopf bifurcation with
forcing, equation (3.10), but with an additional noise term:

∂tW = (ζr + iω∗)W − (ν + iσ) |W |2 W + P̃ eiωt + ξ.

(4.13)

In this Langevin equation the variable ξ represents complex
Gaussian white noise: 〈ξ(t)ξ ∗(t + τ)〉 = εδ(τ ) and
〈ξ(t)ξ(t + τ)〉 = 0, in which ε is the noise strength and
δ(τ ) is the Dirac delta function. Analysis of this equation
shows that the response at very low levels of stimulation is
entirely governed by the fluctuations: 〈|W |〉 ∼ √

ε. Above a

crossover level of stimulus intensity,
∣∣∣P̃ ∣∣∣ > Pc, the response

then increases monotonically with the level of stimulation.
The crossover intensity Pc therefore represents the threshold
at which the system begins to detect the external stimulus.

Above the crossover level of stimulation Pc the response of
a linear system increases linearly with the stimulation intensity:

〈|W |〉 ∼
∣∣∣P̃ ∣∣∣. For a nonlinear system, however, the situation

can be more complicated. Assume that the system operates
close to the Hopf bifurcation, so that ζr ≈ ζ

(c)
r = 0, and is

stimulated at the resonant frequency ω∗ and at an intensity
exceeding the crossover value Pc. As in the noiseless case,
we then expect the system’s response to increase with the

cubic root of the stimulation intensity: |W̃ | ∼ 3

√
|P̃ |. Careful

investigation reveals, however, that the nonlinear dependence
can involve still smaller coefficients; a nonlinear relation
|W̃ | ∼ |P̃ |α with α < 1/3 is possible (Lindner et al 2009).

Noise also appears at the level of the basilar membrane,
which undergoes spontaneous fluctuations of a magnitude near
that of the response evoked by a threshold acoustic stimulus
(Harris 1968, Nuttall et al 1997). Although this noise behaves
in several regards like a bandpass-filtered acoustic response,
it is unaffected by obstruction of the middle ear and therefore
does not reflect transduction of external noise. Furthermore,
the frequency of the measured noise, around 18 kHz, is so great
that low-frequency cardiovascular and respiratory sources are
unlikely to cause it. Because the strength of the noise is
correlated with the sensitivity of a cochlea, it is apparently
enhanced by the cochlear active process and thus reflects the
activity of hair cells. The ultimate source of the noise, however,
remains uncertain (Nuttall et al 1997).

5. Micromechanics of the organ of Corti

Resting upon the basilar membrane is the most mechanically
complex structure in the body, the organ of Corti (figure 14(a)).
First investigated by Alfonso Corti (1851), this sensory
apparatus is a highly specialized epithelium, a tissue consisting
of a layer of cells joined side-to-side in a continuous
sheet. Tight junctions form molecular gaskets between the
adjacent cells, allowing the epithelium to separate dissimilar
liquids without mixing. Adherent junctions between specific
cells provide strong mechanical connections that allow the
propagation of forces from cell to cell. Nerve fibers enter
the organ of Corti along its neural edge, the boundary nearest

the center of the cochlea spiral. The opposite, abneural edge
contacts a body ridge, the spiral ligament. The organ of
Corti comprises at least ten morphologically distinct types
of cell, many of which bear eponyms derived from their
discoverers. Only four classes of cell are directly germane
to an understanding of the transduction process, of which the
most important are two varieties of hair cells.

5.1. Architecture of the organ of Corti

The human organ of Corti is about 33 mm in length and about
100 µm in width. Because this epithelial strip is broadly
similar in structure throughout, one may conceptually divide
the organ into transverse segments about 8 µm in length,
each of which comprises a full complement of cell types
(figure 14(a)). In each segment two stiff pillar cells form a
solid triangle at the neural edge of the basilar membrane. An
inner hair cell abuts the pillar cells on their neural side; on
the abneural side stand three outer hair cells, each of which
is supported at its base by a Deiters’ cell. The apices of
the outer hair cells contribute to a rigid, planar structure of
actin filaments, the reticular lamina, that extends to the tops
of the pillar cells. The tallest stereocilia in the hair bundle of
each outer hair cell insert firmly into the overlying tectorial
membrane. This acellular, collagenous gel extends in parallel
to the reticular lamina from the spiral limbus to the outer hair
cells. The tectorial membrane also overlies the hair bundles of
the inner hair cells without coupling directly to them.

Inner and outer hair cells differ in several regards.
About 95% of the afferent auditory-nerve fibers that transmit
information into the brain contact the inner hair cells; only
5% innervate the outer hair cells (Spoendlin 1969). Efferent
fibers that send feedback information from the brainstem to the
cochlea, however, target predominantly the outer hair cells.
The two cell types also exhibit distinct morphologies: inner
hair cells have a flask-like shape and are around 30 µm long,
whereas outer hair cells are cylindrical with lengths between
20 µm at the cochlear base and 80 µm at the apex.

The differences between the two types of hair cells
reflect their distinct functions. Inner hair cells specialize in
forwarding information derived from acoustic signals to the
brain. Because ablation of outer hair cells significantly elevates
the hearing threshold and reduces frequency selectivity, those
cells have been recognized as the source of the active
mechanical feedback that underlies cochlear amplification
(Ryan and Dallos 1975, Kiang et al 1976, Dallos and Harris
1978, Harrison and Evans 1979). Consistent with this role,
the hair bundles of outer hair cells can exert force and the cell
bodies exhibit somatic motility (Kennedy et al 2005, 2006,
Ashmore 2008). Efferent innervation provides a means for
the brain to regulate the amount of amplification (Galambros
1956, Fex 1962, Wiederhold 1970, Mountain 1980, Murugasu
and Russell 1996), presumably in order to suppress noise and
to enhance sensitivity to sounds of interest.

5.2. Eigenmodes of internal movement

The mechanics within the organ of Corti, commonly referred
to as cochlear micromechanics, can be conceptualized through
a simplified model with two degrees of freedom (figure 14(b);
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Figure 14. Micromechanics of the organ of Corti. (a) Two pillar cells form a stiff triangle on the basilar membrane; the liquid-filled interior
space is referred to as the tunnel of Corti (ToC). Three outer hair cells (OHC) in series with Deiters’ cells (DC) connect the reticular lamina
and basilar membrane. Their hair bundles are inserted into the tectorial membrane, whereas that of the inner hair cell (IHC) stands free. Hair
cells of both types are innervated by auditory nerve fibers (ANF). (b) In a model for the micromechanics of the organ of Corti, the two main
degrees of freedom are the vertical vibration of the basilar membrane and the motion of the complex formed by the reticular lamina, the hair
bundles of the outer hair cells, and the tectorial membrane. The components are defined in the text.

Zwislocki and Kletsky 1979, Allen 1980, Neely and Kim
1986, Mammano and Nobili 1993, Markin and Hudspeth
1995b, Nobili and Mammano 1996). The first involves the
up-and-down vibration of the basilar membrane at a velocity
V . The second degree of freedom emerges because the hair
bundles of outer hair cells connect the reticular lamina to
the tectorial membrane. Owing to geometric constraints,
upward or downward deflection of the reticular lamina and
tectorial membrane elicits a proportionate shearing of the
bundles. We denote by VHB the velocity of the complex formed
by hair bundles, reticular lamina, and tectorial membrane.
Although both degrees of freedom in principal involve rotatory
movements, the angular excursions are so small—no more than
a milliradian—that the motions may be regarded as rectilinear.

Two types of forcing each affect a single degree of
freedom. First, sound stimulation evokes pressure changes
in the three scalae. The pressure in the scala tympani produces
a force on the basilar membrane, whereas the pressure in the
scala media acts on the organ of Corti. If we assume that the
organ is deformable but not compressible, then it transmits
the pressure in the scala media to the basilar membrane.
Sound stimulation therefore results in a force FS on the basilar
membrane but not directly on the hair-bundle complex. In
the following we shall consider stimulation at an angular
frequency ω, with FS = F̃Seiωt + c.c., and the response at
the same frequency. As the second forcing, the hair bundle
can produce an active force FHB that is exerted against the
tectorial membrane but not directly on the basilar membrane.

If the two degrees of freedom were uncoupled, each would
respond only to the force that directly acts on it. In this situation
the basilar-membrane velocity V would be related to the
sound-induced force FS through its impedance Z, ZṼ = F̃S.
The velocity VHB of the complex formed by the reticular
lamina, hair bundles, and tectorial membrane would follow
as ZHBṼHB = F̃HB, in which ZHB is the impedance of the
hair-bundle complex.

In the organ of Corti the two degrees of freedom are
actually coupled. Sound-induced forces can accordingly

vibrate the hair bundles, and the forces evoked in the bundles
can feed back onto the basilar membrane. Length changes
of the outer hair cells can modify the coupling and provide
additional force. The details of these processes govern the
micromechanics of the organ of Corti and can produce a variety
of intriguing behaviors.

Coupling between the two degrees of freedom partly
involves active feedback through the outer hair cells that, in
series with Deiters’ cells, connect the basilar membrane to the
reticular lamina. Let VEM be the velocity at which the outer hair
cells change length and ZD be the impedance of the underlying
Deiters’ cells. Because the length change occurs against this
impedance, it implies an electromotile force F̃EM = ZDṼEM.
This force acts with an equal magnitude, but in the opposite
direction, on the reticular lamina and basilar membrane. The
remainder of the organ of Corti provides additional coupling
characterized by an impedance ZR. The velocities of the two
degrees of freedom, V and VHB, follow from the three forces
FS, FEM, and FHB through

�

(
ṼHB

Ṽ

)
=

(
F̃HB + F̃EM

F̃S − F̃EM

)
, (5.1)

in which the 2 × 2 matrix � contains the coupling terms

� =
(

ZHB + ZD + ZR −ZD − ZR

−ZD − ZR Z + ZD + ZR

)
. (5.2)

The micromechanics of the organ of Corti can be analyzed
conveniently by considering the two vibrational eigenmodes
associated with the two eigenvectors of the matrix �. For
ease of presentation, we consider the simplified situation in
which the impedances of the basilar membrane and hair-bundle
complex are equal, Z = ZHB. The two eigenvalues ζ(1) and
ζ(2)and the corresponding eigenvectors e(1) and e(2) of the
matrix �are then

ζ(1) = Z, e(1) =
(

1
1

)
;

ζ(2) = Z + 2ZD + 2ZR, e(2) =
(−1

1

)
.

(5.3)
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The first eigenmode is an in-phase vibration of the hair-bundle
complex and the basilar membrane. Because it involves no
relative motion between the two degrees of freedom, this
motion is not impeded by their coupling, but rather by their
intrinsic impedances Z. The resonant frequency of this mode
therefore accords with that of the isolated basilar membrane
or hair-bundle complex.

In the second eigenmode, the two degrees of freedom
vibrate in antiphase: their velocities are equal in magnitude but
oriented in opposite directions. The resonant frequency of this
mode is in general higher than that of the in-phase motion, for
the coupling impedances ZD and ZR are dominated by stiffness
and viscosity but involve negligible inertial contributions.

Because the electromotile force acts on the basilar
membrane and the hair-bundle complex in opposite directions,
it can excite the antiphase mode of motion but not the
in-phase one. This important feature becomes apparent
mathematically when we express the motion through the

eigenvectors:
(
ṼHB, ṼBM

)T
= V(1)e(1) + V(2)e(2) with the

coefficients Ṽ(1) = (ṼBM + ṼHB)/2 and Ṽ(2) = (ṼBM − ṼHB)/2.
Equation (5.1) then becomes(

Z 0
0 Z + 2ZD + 2ZR

) (
Ṽ(1)

Ṽ(2)

)
= 1

2

(
F̃S+F̃HB

F̃S − F̃HB − 2F̃EM

)
.

(5.4)
Only the second eigenmode experiences the electromotile
force, whereas the forces evoked by sound and by the
hair bundles act on both types of vibration. In agreement
with this analysis, experiments on an apical segment of the
cochlear partition show that the tectorial membrane and basilar
membrane move in opposite directions when outer hair cells
are stimulated electrically in the absence of a pressure stimulus
(Mammano and Ashmore 1993).

Somatic motility and hair-bundle activity affect the motion
of the organ of Corti in distinct ways. Because the sound-
evoked force acts only on the basilar membrane, it excites
both in-phase and antiphase motions. Somatic motility can
then amplify the antiphase component, thus altering the ratio
between the two components and hence the type of motion.
Although the hair-bundle force acts on both vibrational modes,
it does so with opposite effects: either it excites in-phase
motion and suppresses antiphase motion, or vice versa. Hair-
bundle activity, then, alters the way in which the organ of
Corti moves. A specific combination of hair-bundle and
electromotile forces can produce the same mode of motion as a
sound force. In the above example, this situation arises when
the electromotile force is equal but opposite the hair-bundle
force, F̃EM = −F̃HB.

Recent experimental techniques and results are reviewed
in section 5.4 below, but details of the movements in the
living organ of Corti remain unclear. The respective roles
and importances of hair-bundle activity and somatic motility
thus remain uncertain as well. The micromechanics of the
organ of Corti is further complicated by the dependences
of the electromotile and hair-bundle forces on hair-bundle
displacement. The electromotile force FEM is proportional
to the electrically evoked length change of the outer hair cell,
F̃EM = ZDṼEM. For small signals the alteration in length

is proportional to the change in membrane potential, which
in turn depends linearly on hair-bundle displacement. We
may therefore write ṼEM = −αṼHB with a coefficient α.
The minus sign arises because deflection of a hair bundle
in the positive, excitatory direction depolarizes the cell and
shortens it. Because the membrane potential is regulated by
ion channels that can provide delay and feedback, however, the
coefficient α varies with frequency and is generally complex.
The mechanical activity of the hair bundle is likewise evoked
by bundle displacement (section 4.6). In theoretical models,
interactions between the two mechanical activities can produce
a variety of complex behaviors (Ó Maoiléidigh and Jülicher
2010, Reichenbach and Hudspeth 2010b, Meaud and Grosh
2011). As a distinct feature set out in the proceeding section,
somatic motility not only can amplify a type of motion, but
also can influence the coupling between the basilar membrane
and the hair-bundle complex.

5.3. Reciprocity breaking and unidirectional amplification

Consider an amplifier in which a signal acts at the input to
elicit a response at the output (figure 15(a)). In the case of
mechanical coupling, Maxwell’s reciprocity theorem states
that a force applied at the input produces a displacement at
the output that equals the displacement at the input caused
by an equal force at the output. In other words, the forward
coupling equals the backward coupling. In the situation of
the inner ear, the basilar membrane represents the input, for it
experiences a sound-evoked force. The output corresponds to
the displacement of the hair bundle. The system’s mechanical
reciprocity is then manifest in equations (5.1) and (5.2): in the
matrix �, the two off-diagonal terms that describe the coupling
from the basilar membrane to the hair bundle and back agree.

Reciprocity can be adverse to an amplifier’s operation.
When amplification produces nonlinear behavior and thus
distortion (section 3.2), backward coupling has the undesirable
feature of perturbing the input signal. An ideal amplifier
operates unidirectionally: although the forward coupling must
remain, the backward coupling from the output to the input
should be eliminated (figure 15(b)).

Active feedback such as that resulting from somatic
motility can violate the reciprocity of a passive system and
provide unidirectional coupling (Reichenbach and Hudspeth
2010a, 2011). To demonstrate this effect, we start from the
electromotile force F̃EM = ZDṼEM in which the velocity
VEM is proportional to the hair-bundle displacement through
a complex coefficient α: ṼEM = −αṼHB (section 5.2). The
velocities of the two degrees of freedom, V and VHB, now
follow from the sound-evoked force, FS, and the hair-bundle
force, FHB, through

�

(
ṼHB

Ṽ

)
=

(
F̃HB

F̃S

)
. (5.5)

The matrix � contains the coupling terms as well as the active
feedback,

� =
(

ZHB + (1 + α)ZD + ZR −ZD − ZR

−(1 + α)ZD − ZR Z + ZD + ZR

)
. (5.6)
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Figure 15. Unidirectional amplification. (a) A naı̈ve amplifier functions through reciprocal coupling: the output feeds back to the input with
the same strength as the input couples to the output. When the output is amplified, it can produce distortion that is then emitted backward to
the input. (b) Active feedback can reduce the backward coupling to zero, such that coupling occurs unidirectionally from the input to the
output. No distortion then arises at the input. (c) When amplification is unidirectional, the output response can be enhanced and nonlinear,
whereas the input response remains unchanged and linear. (d) We have implemented unidirectional amplification in an active microphone
described in the text.

The off-diagonal term −ZD − ZR is unchanged from
equation (5.2); it encodes the forward coupling from the sound
force that acts from the basilar membrane to the hair bundle.
The other coupling term −(1 + α)ZD − ZR that describes
the reverse coupling of hair-bundle forces onto the basilar
membrane, however, is altered through the active feedback.
In consequence, the forward and backward coupling between
the basilar membrane and the hair-bundle complex differ.
As an extreme case of this nonreciprocity, the backward
coupling can vanish at a certain strength and timing of the
feedback, represented by a critical value α∗ = −1 − ZR/ZD

(figure 15(b)).
Unidirectional coupling might allow efficient and

undistorted amplification in the cochlea. Although a sound-
evoked force would be transmitted to the hair bundles, the force
evoked there would not feed back to the basilar membrane.
Hair-bundle activity would therefore have to counteract only
the viscous damping associated with its own motion, but
not that involving the basilar membrane. The distortion
emerging from nonlinear hair-bundle dynamics would not be
emitted from the basilar membrane and would accordingly not
contaminate the sound signal. Furthermore, the hair bundles
would exhibit a resonance that is not influenced by the material
properties of the basilar membrane. As set forth in section 5.4
below, this mechanism might be important in the apical, low-
frequency region of the cochlea.

Characteristic nonlinear behavior emerges when ampli-
fication is unidirectional. Active feedback can cancel the
viscous part in the output impedance so that the output’s
response approaches a Hopf bifurcation and becomes nonlinear
at its resonance (figure 15(c)). Because the active feedback
does not couple to the input, the input impedance remains
unchanged and the response linear. For low signal strength,
the output response exceeds the input signal by a large amount.
Measurement of this behavior in the cochlea would provide an
unequivocal proof of unidirectional amplification. The hair-
bundle motion would be amplified and display a compressive
nonlinearity, whereas the basilar membrane would respond
linearly to sound intensity, with only a passive vibration. Some

measurements from the cochlear apex indeed point in this
direction (section 5.4).

To demonstrate that unidirectional coupling can be useful
in engineering as well, we constructed an active microphone
that employs this principle (Reichenbach and Hudspeth 2011).
We started from a dynamic-coil microphone in which a
diaphragm is attached to a coil that moves in a magnetic field
(figure 15(d), Eagle 1997). Sound vibrates the diaphragm and
thereby causes oscillation of the coil that electromagnetically
induces a voltage. We then positioned a piezoelectric stack
between the coil and diaphragm. The voltage driving this
element was controlled by the voltage in the coil but adjusted
in magnitude and phase such that it provided unidirectional
coupling between the diaphragm and coil. Amplifying the
coil’s voltage and feeding it back amplified the coil’s motion.
Because of unidirectional coupling the diaphragm was not
affected by the coil’s vibration and any distortion produced
within the coil was not emitted from the microphone. We
thus obtained a nondistorting mechanical sensor that was
ultrasensitive near a specific resonant frequency.

The device also serves as an illustration for the putative
micromechanics of the organ of Corti at the cochlear apex:
because it collects the sound force, the diaphragm corresponds
to the basilar membrane. The mechanical signal is converted
to an electrical response within the coil, which is accordingly
the hair bundle’s analogue. The piezoelectric element imitates
the electromotile behavior of the outer hair cells.

5.4. Measurements from the cochlear base and apex

Laser interferometry readily measures basilar-membrane
displacements only a few nanometers in amplitude. A beam
of coherent, monochromatic light is split into two beams, one
of which is reflected from a sample whose vibrations are to
be investigated. The other beam, which serves as a reference,
is shifted in frequency by a small amount �f by reflection
from an oscillating mirror. When the beams are subsequently
recombined, the frequency difference produces a temporal
oscillation between constructive and destructive interference
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Figure 16. Laser-interferometric measurements from the cochlea in
vivo. (a) The base of the cochlea can be accessed from the scala
tympani (ST) through either the round window or a hole drilled in
the temporal bone. Interferometric vibrometry employs a laser
(green) focused on the basilar membrane (BM). The reflectance of
the latter may be enhanced by a glass or plastic bead (orange). (b)
Near the cochlear apex, a hole may be drilled to access the scala
vestibuli (SV) and scala media (SM). Interferometric measurements
can then be obtained from the basilar membrane and the tectorial
membrane (TM) either by monitoring through the transparent
Reissner’s membrane (RM) or by opening the latter. The vibrations
of Reissner’s membrane itself can be measured from attached beads.

and hence beating at the frequency �f . The phase of the
beating reflects the phase shift between the two beams that
emerges from the difference in path length. Vibration of
the structure in question thus produces an oscillating phase
change whose magnitude encodes the amplitude of vibration.
In scanning laser interferometry an experimenter observes the
vibration at different positions on the sample; their relative
phases can evidence propagating waves.

Applying laser interferometry to measure the vibration of
the organ of Corti requires optical access. Because the cochlea
is encased in the temporal bone, the hardest of the body, and
because it is wound in a spiral shape, such access is not obtained
easily. This technical difficulty is compounded by the fact that
the cochlea’s active process is compromised by even modest
surgical damage. Most of the successful measurements have
been obtained from the cochlear base, with only a few from
the apex. The intermediate turn or turns remain inaccessible.

The base of the cochlea can be approached either
through the transparent round window or by drilling a
hole through the cochlear wall. In both cases the basilar
membrane is viewed from the scala tympani (figure 16(a)).
Measurements from a single point on the basilar membrane
during stimulation at different frequencies have demonstrated
critical-layer absorption (section 2.5) as well as a compressive
nonlinearity in the basilar membrane’s response (section 3.2).
Scanning along the midline of the basilar membrane has
also confirmed the existence and verified the properties of
traveling waves (Ren 2002, Ren et al 2011, Fisher et al
2012). Interestingly, the local wavelength at a given cochlear
position changes negligibly between an active and a passive
preparation. In section 6 we show that the local wavelength
follows from the imaginary part of the cochlear partition’s
impedance. The active process accordingly has little influence
on the impedance’s imaginary part. Scanning across the
basilar membrane has shown that each radial segment of the

membrane moves approximately in phase (Rhode and Recio
2000, Ren et al 2011, Fisher et al 2012). This finding is
important in that some theoretical models had predicted that the
electromotile force would yield a bimodal radial deformation
of the basilar membrane (Mammano and Nobili 1993, Nobili
and Mammano 1996).

At the cochlear base, the basilar membrane blocks the
view of the organ of Corti and precludes measurements
of the micromechanics with an ordinary interferometer.
Recently, however, researchers have applied optical-coherence
tomography to the inner ear (Chen et al 2007, Wang and
Nuttall 2010). As opposed to the coherent, monochromatic
light of a conventional laser interferometer, optical-coherence
tomography employs light of multiple wavelengths for which
coherence is limited to a very short distance, typically a few
micrometers. Interference between the sample beam and the
reference beam of an interferometer then occurs only when
two path lengths differ by less than this coherence length.
In this way one can record from a specific depth within
a semitransparent organ. When this technique is applied
to the organ of Corti, both the basilar membrane and the
reticular lamina reflect enough of the incoming light to permit
interferometric measurement. Such recordings from animals
in vivo have shown that, at the low sound-pressure levels for
which the active process provides the greatest amplification,
the reticular lamina vibrates twice as much as the basilar
membrane and its vibrations lead those of the basilar membrane
by 60◦ (Chen et al 2011, Zha et al 2012). The vibrations of
both structures are much smaller post mortem and have the
same amplitude and phase. The result from this passive regime
accords with the theoretical considerations from section 5.2, in
which a sound-evoked force near the resonance defined by the
impedance Z evokes primarily in-phase motion of the basilar
membrane and hair-bundle complex. The measurement from
the living organ of Corti disagrees with the antiphase motion
anticipated naı̈vely when somatic motility is the principal force
of amplification.

Measurement of displacement alone cannot fully
characterize cochlear mechanics or micromechanics, which
requires simultaneous determination of the conjugate variable
force. The two quantities together define a system’s impedance
as well as its vibrational energy. To measure force in the
cochlea, Elizabeth Olson has developed a miniature pressure
sensor that consists of a hollow-core glass fiber with a thin
diaphragm across its tip (Olson 1998, 1999). Acoustic pressure
deflects the diaphragm, yielding a measurable optical signal.
Applied near the cochlear base, this apparatus quantifies the
pressure wave as well as its decay as a function of distance from
the basilar membrane. Simultaneous interferometric recording
of the basilar-membrane velocity yields the impedance of the
cochlear partition (Dong and Olson 2009).

Because the apical region of the cochlea has been
investigated less, even fundamental aspects of its mechanics
remain controversial (Robles and Ruggero 2001). Apical
recordings are made through an artificial opening into the scala
vestibuli (figure 16(b)). In this way, the micromechanics of the
organ of Corti is accessible, for the motions of both the basilar
and tectorial membranes can be measured in a living animal.
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Figure 17. Schematic diagrams of observations from the cochlear
apex. (a) Some interferometric experiments have found that the
motion of Hensen’s cells in the organ of Corti, which presumably
resembles that of the tectorial membrane and the hair bundles,
exceeds the motion of the basilar membrane by orders of magnitude
near the characteristic frequency f0. The tuning is broad and lacks a
sharp high-frequency cutoff. (b) The tuning curve of an
auditory-nerve fiber from the apex (green, with a low characteristic
frequency fL < 1 kHz) differs significantly from that of a basal fiber
(brown, with a high characteristic frequency fH > 5 kHz). As
implied by the mechanical tuning curve, tuning at low frequencies is
much broader.

Early recordings found that the tectorial membrane vibrates
up to 900-fold as much as the basilar membrane (figure 17(a),
ITER 1989, Khanna and Hao 1999a, 1999b). Although
distortion hinted at nonlinear behavior, the displacements at
the fundamental frequencies scaled linearly with the applied
sound-pressure level. Subsequent studies, however, found
that the tectorial and basilar membranes undergo comparable
displacements with a partly linear, partly compressive, or partly
expansive nonlinearity (Cooper and Rhode 1995, Rhode and
Cooper 1996, Zinn et al 2000).

Despite these controversies, the apical measurements
agree in that they do not find the strongly compressive
nonlinearity that characterizes the mechanics in the basal
region. The data further evidence a broad tuning without
the sharp decay on the resonance’s high-frequency side that
emerges near the base (figure 17(a)). The latter result agrees
with observations regarding the tuning of individual auditory-
nerve axons. The fibers that emerge from the basal region
of the inner ear are tuned sharply, with the high-frequency
cutoff that characterizes critical-layer absorption (figure 4(d)
and figure 17(b)). The fibers from the cochlear apex, however,
display broader tuning and lack a sharp threshold increase at
high frequencies. The phenomenon of critical-layer absorption
evidently does not operate in the apical portion of the cochlea,
and the mechanism of frequency tuning remains elusive there.

We have proposed that unidirectional amplification
provides frequency selectivity in the low-frequency region.
Although the basilar membrane presumably does not resonate
at frequencies below about 1 kHz (Naidu and Mountain 1998),
unidirectional coupling allows an independent resonance of
the hair-bundle complex to amplify its own motion. The
vibration of the complex would then greatly exceed that of the
basilar membrane, as has been observed in some recordings
(figure 17(a); ITER 1989, Khanna and Hao 1999a, 1999b).

If the mechanics of the cochlea differs at its basal
and apical extremes, what occurs at intermediate positions?

Recordings from auditory-nerve fibers in the chinchilla reveal
a transition between critical-layer absorption near the base and
apical mechanics in two steps, one at 4–5 kHz and another
near 2 kHz (Temchin et al 2008a). Direct measurements of
cochlear mechanics from the corresponding middle region of
the cochlea, however, seem infeasible at present. In vitro
preparations of the cochlea in which a cochlear segment
is isolated and the endocochlear potential is reestablished
through externally applied current might elucidate this issue
(Fridberger and Boutet de Monvel 2003, Chan and Hudspeth
2005a, 2005b, 2005c, Jacob et al 2011).

6. Active waves on the basilar membrane

Local amplification through hair-cell activity yields only a
moderate gain. As an example, individual hair bundles
enhance their motion by about tenfold (Martin and Hudspeth
2001). Even though measurements in vitro probably
underestimate the full capacity of a single cell, the gain in vivo
is likely of the same order of magnitude. This contrasts with
the huge gain observed in the cochlea: increases of membrane
vibration by a factor of 1000 or more have been measured in
an intact animal preparation (section 3.2). Can local hair-cell
activity produce such large cochlear gains?

Mechanical coupling can increase the effectiveness of a
cluster of hair cells. The gain of a single hair bundle, as well as
that of the cochlea, is largest for low intensities of stimulation.
At low signal levels, however, noise becomes important.
Below a certain intensity of stimulation, noise obstructs
the hair bundle’s mechanotransduction and thus limits its
amplification. Mechanical coupling of multiple stochastic
oscillators restricts the relative motion between them, thereby
effectively reducing the noise (Chang et al 1997). Theoretical
studies have shown that mechanical coupling of hair bundles
can indeed lower the noise floor and thereby increase the gain
(Dierkes et al 2008, 2012). As an example, a nine-by-nine
array of hair bundles can theoretically boost the gain of each
bundle by more than tenfold. An actual hair cell whose bundle
had been virtually coupled to model hair bundles displayed an
enhanced gain as well (Barral et al 2010).

Another type of coupling arises through the cochlear
fluids. This hydrodynamic coupling produces on the basilar
membrane the surface wave that we have described in
section 2.2. The propagation of such a wave through a region
of local amplification can greatly increase the wave’s gain. In
the following we describe this gain accumulation together with
the physics of active cochlear waves.

6.1. Accumulation of gain

A key result of the analysis of surface waves on the basilar
membrane of a passive cochlea is equation (2.11), which
assumes that the velocity Ṽ of the basilar membrane is linearly
proportional to the pressure across it, p̃(2) − p̃(1)

∣∣
z=0, with the

frequency-dependent impedance Z of the basilar membrane as
the proportionality constant. The micromechanics of the organ
of Corti can alter the impedance of the basilar membrane. As
set out in section 5.2, the organ of Corti may be described
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through two degrees of freedom, the velocity V of the basilar
membrane and the velocity VHB of the hair-bundle complex.
Both depend on the sound-induced force FS, the hair-bundle
force FHB, and the electromotile force FEM through different
coupling impedances (equations (5.1) and (5.2)). The force
derived from acoustic stimulation follows from the pressure
difference across the area A of a basilar-membrane segment:
FS = A(p(2) − p(1)). If we assume that the electromotile
and hair-bundle forces are proportional to hair-bundle velocity,
equation (5.1) yields a linear relation of basilar-membrane
velocity to the pressure difference:

Ṽ = 1

Zact

(
p̃(2) − p̃(1)

)∣∣
z=0 . (6.1)

Here Zact is the active impedance that follows from the
micromechanics and the hair-cell activity of the organ of Corti.

The active basilar-membrane impedance Zact in general
differs from the passive impedance Z. How does this influence
the propagating wave? As set forth in section 2.4, the WKB
approximation employs the ansatz

Ṽ = V̂ (x) exp

[
−i

∫ x

0
dx ′k(x ′)

]
(6.2)

for the basilar-membrane velocity. The local wave vector
is k(x) = ±√−2iωρ0/[Zact(x)h] and the amplitude factor

is V̂ (x) ∼ 1/
4

√
Z3

act(x). The velocity’s amplitude |Ṽ | thus

follows both from the magnitude of the amplitude factor V̂

and from the imaginary part of the wave vector k:∣∣∣Ṽ ∣∣∣ =
∣∣∣V̂ (x)

∣∣∣ exp

[∫ x

0
dx ′Im[k(x ′)]

]
. (6.3)

Except close to the resonant position, the amplitude factor V̂

is not significantly altered by active feedback. Indeed, the
amplitude factor follows from the impedance that is dominated
by stiffness up to the resonant position. Mass and stiffness in
turn determine the real part of the wave vector k and hence
the local wavelength. Because interferometric recordings from
the basilar membrane (section 5.4) measure little change in the
local wavelength between an active and a passive cochlea, the
active and the passive impedance approximately agree in their
imaginary parts. The same conclusion follows from the wave’s
behavior near its resonant position that marks the sharp decay
of the wave’s amplitude: this location remains unchanged
between an active and a passive inner ear (figure 7(a)). Hair-
cell activity does not appear to significantly alter the effective
mass and stiffness of the cochlear partition, and therefore does
not change the amplitude factor V̂ .

Active force can, however, increase the traveling wave’s
amplitude through the wave vector’s imaginary part that
reflects drag. In the instance of a forward-traveling wave, for
which the wave vector’s real part is positive, a positive drag
coefficient in the local impedance leads to a negative imaginary
part in the wave vector and hence to a decrease in amplitude.
Reduction by the active process of the drag coefficient—
potentially even rendering it negative—counteracts this decay
in amplitude.

Changes of the local damping brought about by active
forces can accumulate. The phase factor in equation (6.2)
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Figure 18. Schematic diagrams illustrating the accumulation of
local gain. (a) A wave that traverses a region of amplification can
accumulate local gain to achieve a greatly enhanced global gain.
(b) When the local gain is eliminated by chemical treatment within a
small cochlear region (gray), the global gain is somewhat less than
that in a normal cochlea. The global gain is nonetheless significant
as a result of the accumulation of local gain over the untreated
segments of the basilar membrane.

contains the integral over the local wave vector, such that a
reduction of drag over an extended cochlear region produces
a cumulative effect on the amplitude. We have recently
demonstrated that the active process, although locally of
moderate effect, can through this mechanism produce a much
larger overall increase in the wave’s amplitude (figure 18(a);
Reichenbach and Hudspeth 2010b). Specifically, we
considered a reduction of the local damping through the active
process by a moderate factor of ten. Without a propagating
wave, a segment of the cochlea near its resonant frequency
would exhibit a velocity enhanced by only one order of
magnitude (equation (3.1)). By traversing an extended region
over which the damping is reduced, however, the wave can
grow in amplitude by several orders of magnitude.

We recently performed experiments in which we disabled
the cochlear amplifier at specific cochlear locations (Fisher et al
2012). We inhibited somatic motility with 4-azidosalicylate,
a small carboxylic acid that binds reversibly to prestin and
disables its functioning. Upon exposure to ultraviolet light
the binding becomes irreversible. We exposed the cochlea to
4-azidosalicylate, irradiated a specific location with ultraviolet
light, and then removed the free drug. Somatic motility was
thus impaired only within the irradiated cochlear location and
functioned normally elsewhere.

When scanning longitudinally along the midline of
the basilar membrane and measuring its displacement, we
observed that the growth in amplitude was diminished in the
region of inhibited somatic motility (figure 18(b)). Recon-
structing the membrane impedance revealed that the local
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Figure 19. Schematic representation of an experiment to analyze
absolute cochlear amplification. (a) Two primary frequencies f1 and
f2 generate the distortion product fd = 2f1 − f2 in their region of
overlap on the basilar membrane. The wave elicited by the
distortion product experiences gain near its characteristic place xd ;
recording a neuron’s activity from that position yields a measure of
the wave’s peak amplitude. When the primary frequencies are
sufficiently distant, the generation site of the distortion frequency
lies basal to, and outside, its gain region. (b) Nearby primary
frequencies produce a distortion product within the region of gain.

gain was indeed eliminated. However, the global gain—that
is, the difference in amplitude between the living and dead
cochlea—remained substantial. In confirmation of our theo-
retical expectations, this residual gain resulted from the accu-
mulation of local gain on both sides of the irradiated region.

6.2. Allen–Fahey experiment

The relevant quantity in the above analysis of gain
accumulation was the difference in drag between an active and
a passive cochlear partition. What do we know, however, about
the absolute value of the membrane’s drag coefficient? Can the
active process change this from a positive to a negative value?
In the latter case, instead of losing energy due to viscous forces,
the wave would gain energy when propagating across a region
of negative drag.

In 1992 Jont Allen and Paul Fahey conducted a remarkable
experiment to measure energy gain in the cochlea. They
used two distinct ways to record the distortion frequency
fd = 2f1 − f2 that was produced by stimulating the cochlea
simultaneously at two close frequencies f1 and f2 (section 7.1).
First, they measured the response of an auditory-nerve fiber
that originated from the cochlear position at which the wave
produced by the distortion frequency peaked. Second, with
a microphone in the ear canal they recorded the airborne
vibration at the distortion frequency.

The two recorded signals arose through distinct waves in
the cochlea (figure 19). The distortion product was generated
in the overlap region of the two primary frequencies f1 and
f2 and hence near the peak of the wave elicited by the higher
frequency, f2. The lower sideband 2f1 − f2 was smaller than
both primary frequencies, such that its characteristic place lay
apical to those of f1 and f2. The signal recorded from the
nerve fiber at that position thus emerged as the result of a
wave at the distortion frequency that traveled apically from its
generation site. The microphone in the ear canal, however,
detected a signal that must have emerged through a wave
that propagated basally. When the two primary frequencies
were widely separated, only the forward-traveling wave would
experience gain (figure 19). For close primary frequencies, in
contrast, the forward-traveling wave would be subject to only a
small amount of gain, and the backward-traveling wave might
encounter gain as well.

Comparing the two circumstances—distant and close
primary frequencies—accordingly yields insight into the
energy gain: if the cochlea were to raise the wave energy,
the ratio of the amplitude of the forward-traveling to that of
the backward-traveling wave would increase with a growing
distance between the primary frequencies. Allen and Fahey
adjusted the primary frequencies and their levels such that
the distortion frequency as well as its signal strength at
the peak position, as manifested in the firing rate of the
corresponding auditory-nerve fiber, was identical in both
situations. Surprisingly, they found that the distortion level
measured in the ear canal did not depend on the ratio of the
primary frequencies. This result suggests that the gain region
provides neither net negative nor net positive drag. Because
we expect viscous forces at the interface of the fluid and the
membrane to dampen wave propagation in a passive cochlea,
we conclude that the gain region must provide amplification
that almost exactly cancels the effect of this drag.

The experiment by Allen and Fahey, which has been
confirmed by various subsequent studies (de Boer et al 2005,
Shera and Guinan 2007), indicates that the active process
tunes the cochlear partition to a critical point, namely to
the transition between positive and negative damping. The
discussion in section 3.2 reveals that this transition represents
a bifurcation. Because of its resonance, each segment of the
cochlear partition appears to be poised at a supercritical Hopf
bifurcation (Duke and Jülicher 2003, Kern and Stoop 2003,
Magnasco 2003).

6.3. The nonlinear traveling wave

So far we have considered linear wave propagation in the
cochlea. The linear approximation seemed justified inasmuch
as the amplitudes of the sound-evoked motions are extremely
tiny. In section 3.2, however, we have described how each
segment of the basilar membrane is poised near a Hopf
bifurcation, such that it responds nonlinearly to forcing at
its characteristic frequency. The Allen–Fahey experiment
reviewed above enforced this hypothesis. How, then, does
the nonlinear response of the basilar membrane shape the
propagating wave?
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Consider a nonlinear relation between the velocity V of
the basilar membrane and the pressure difference p(2) − p(1)

across it: (
p̃(2) − p̃(1)

)∣∣
z=0 = ZṼ + �Ṽ ∗ Ṽ ∗ Ṽ . (6.4)

This equation expands the previous linear relationship,
equation (2.11), with a cubic nonlinear term weighted by a
coefficient �. In fact, the right-hand side may be construed as
a Taylor expansion of the pressure difference in the velocity’s
Fourier coefficient Ṽ . The coefficient of the linear term
is the membrane impedance Z (equation (2.19)), whose
imaginary part vanishes at the resonant frequency. The real
part encodes damping, which may also vanish if the viscous
drag is counteracted by the active process. Nonlinear terms
then become important, and the leading order is quadratic.
As discussed in section 3.2, however, a suitable change
of variables can eliminate the quadratic term so that the
subsequent cubic term governs the response. In the case
of the inner ear, the quadratic term is tiny even for the
untransformed variables. Indeed, the dominant nonlinearity
presumably results from the hair bundle’s nonlinear stiffness
(equation (4.9)). Because outer hair cells operate near an open
probability of 50% (Patuzzi and Rajan 1990, Kirk et al 1997,
Bobbin and Salt 2005), which represents a point of inflection in
the relation of channel open probability and hair-bundle force
to displacement, they do not exhibit a quadratic but only a cubic
nonlinearity around this resting position.

The nonlinear basilar-membrane response (equation (6.4))
now replaces the linear equation (2.11). For ease of
presentation, we describe the resulting effects within the one-
dimensional approximation set out in section 3.2. There we
had derived equation (2.25) for the fluid’s volume flow in the
upper cochlear chamber, which can be rewritten using the
basilar-membrane velocity V as

∂xj̃
(1) = Ṽ − iωhκp̃(1). (6.5)

A change in volume flow follows from a membrane
displacement or from compression of the fluid.

Because the volume flow also follows from the
longitudinal pressure change, iωρ0j̃ = −h∂xp̃, we obtain an
equation for the pressure and the basilar-membrane velocity
alone:

ih

ωρ0
∂2
x p̃(1) = Ṽ − iωhκp̃(1). (6.6)

An analogous relation holds for the lower chamber:

ih

ωρ0
∂2
x p̃(2) = −Ṽ − iωhκp̃(2). (6.7)

As in section 2.3, the average pressure 
 = (p(1) + p(2))/2
propagates as a fast sound wave that does not displace the
basilar membrane:

∂2
x 
̃ = −ω2ρ0κ
̃. (6.8)

However, the pressure difference between the upper and the
lower chambers, p = p(2) −p(1), does produce a displacement
of the basilar membrane:

∂2
x p̃ = 2iωρ0

h
Ṽ − ω2ρ0κp̃. (6.9)

To solve this equation we must relate the pressure difference p̃

to the basilar membrane’s velocity of vibration Ṽ through the
nonlinear equation (6.4). We obtain a wave equation for the
velocity,

∂2
x Ṽ − 2iωρ0

Zh
Ṽ = −�

Z
∂2
x (Ṽ ∗ Ṽ ∗ Ṽ ). (6.10)

This relation corresponds to the original, linear equation (2.30),
now amended by a cubic nonlinearity.

Numerical solution of the nonlinear wave equation (6.10)
shows that the nonlinearity is confined to a relatively small
region near the peak of the traveling wave (Duke and
Jülicher 2003, Kern and Stoop 2003, Magnasco 2003). The
peak displacement in response to signal intensity is strongly
nonlinear. The exponent of the nonlinearity generally differs
from the value of 1/3 associated with a Hopf bifurcation, for the
region of nonlinearity depends on the stimulus intensity. The
region is larger for higher levels of stimulation, which slightly
increases the exponent of the nonlinearity at the peak (Duke
and Jülicher 2003).

6.4. Micromechanics of the organ of Corti and wave
propagation

The active process that amplifies the traveling wave evidently
requires motion within the organ of Corti. The organ is
typically modeled in mechanical terms by accounting for
the impedances of the basilar membrane, hair bundles, and
their coupling (section 5). However, such a description
is valid only when the organ of Corti deforms so as to
leave its cross-sectional area unchanged (figure 20). If this
condition is not met, alterations in the cross-sectional area
must cause longitudinal fluid flows that raise the possibility
of hydrodynamical coupling along the organ of Corti.

An electromotile length change of outer hair cells deforms
the organ of Corti. Near the apex, this deformation may
leave the cross-sectional area constant (figure 20(a)). The
80 µm-long apical outer hair cells do not stand perpendicular
to the basilar membrane, but tilt at an angle of about 45◦ to
insert perpendicularly into the angled reticular lamina. A large
liquid-filled space occurs between the outer hair cells and the
Hensen’s cells, which form an arch reinforced by intracellular
polymer cables. This space is the most affected by length
changes of outer hair cells, which raises the question whether
its cross-sectional area is thereby altered.

We may approximate a cross-section of the liquid-filled
space between the outer hair cells and Hensen’s cells as a
semicircle, with the outer hair cells as its linear edge and
the Hensen’s cells on its arc. A length change of the outer
hair cells leaves the length of the arc constant and hence
changes the semicircle into a semi-ellipsoid. Because a circle
maximizes the ratio of area to circumference, its area remains
constant to first order upon deformation into an ellipsoid of the
same circumference. The same applies to the semicircle when
transformed into a semi-ellipsoid. The fluid space between the
outer hair cells and the Hensen’s cells thus retains an essentially
constant cross-sectional area.

The organ of Corti in the cochlea’s basal region behaves
differently (figure 20(b)). The reticular lamina there lies
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Figure 20. Liquid-filled spaces within the organ of Corti. (a) Length changes of outer hair cells near the apex predominantly deform the
space between them and the arc of Hensen’s cells (red shading and red dotted line). Because this space is shaped as a semicircle, its
cross-sectional area remains unchanged for small deformations. The Hensen’s cells contain large lipid droplets whose function remains
unknown. (b) In the basal region of the cochlea, length changes of outer hair cells presumably alter the cross-sectional area of the organ of
Corti. In addition to the pressures in the scala media and the scala tympani, the pressure within the organ of Corti may then shape wave
propagation. Drawings modified from Held (1902); abbreviations as in figure 14.

parallel to the basilar membrane and the Hensen’s cells do not
form an arc. Length changes of outer hair cells must alter the
distance between the reticular lamina and the basilar membrane
and therefore the cross-sectional area of the organ of Corti.

Electrical stimulation of an excised segment from the
middle cochlear turn has demonstrated fluid flow in the
tunnel of Corti (Karavitaki and Mountain 2007). Microscopic
observation revealed longitudinal deflections of the efferent
nerve fibers that cross the tunnel of Corti; these movements
presumably reflected longitudinal fluid flow in the tunnel. A
finite-element simulation showed that longitudinal flow can
result when electromotile length changes of the outer hair
cells alter the cross-sectional area of the organ of Corti: liquid
may be exchanged easily between the tunnel of Corti and the
region around the hair cells, for the pillar cells are separated by
gaps and do not represent a significant barrier (Zagadou and
Mountain 2012).

Because of the fluid environment, internal motion between
the reticular lamina and the basilar membrane can give rise
to novel types of waves. A model in which the tectorial
membrane experiences the pressure in the scala media and
the basilar membrane experiences that in the scala tympani
exhibits two types of waves, both of which involve internal
motion of the organ of Corti (Lamb and Chadwick 2011, 2014).
Such distinct wave modes may play a critical role in cochlear
amplification, for the cochlear wave appears to transition from
one mode to the other upon reaching its peak position. At
the cochlear base, the wave elicits vibrations of the basilar
membrane and reticular lamina that are in phase and have
equal magnitudes (Chen et al 2011, Zha et al 2012). Near
the resonant position, however, the two structures vibrate at
different phases and amplitudes. This behavior might reflect a
transition between two wave modes as shown in an electrical
analogue of the cochlea (Hubbard 1993, Hubbard et al 1993).

Future investigations of active wave modes may account for the
fluid flow within the organ of Corti as well as the longitudinal
mechanical coupling within the tectorial membrane that might
underlie shear waves (Ghaffari et al 2007, Gu et al 2008).

7. Otoacoustic emissions

Otoacoustic emissions are sounds produced by the inner ear
as a result of its active process (section 3.2). Because these
signals can be measured with a sensitive microphone placed in
the ear canal, the cochlea’s mechanical activity must in some
way propagate back to the middle ear and excite an airborne
sound wave. How this reverse transmission occurs within the
cochlea, however, remains surprisingly little understood. The
issue is further complicated because the backward propagation
appears to employ at least two distinct pathways, both of which
are currently debated.

7.1. Nonlinear combination tones

An important class of otoacoustic emissions includes nonlinear
combination tones. When stimulated at multiple nearby
frequencies, the ear emits sound at additional frequencies that
are linear combinations of the primary tones. As an example,
in response to stimulation at two close angular frequencies ω1

and ω2 the cochlea produces sound signals at frequencies such
as ω1 + ω2 and 2ω1 − ω2. These additional tones are termed
nonlinear combination tones, for they arise from the inner ear’s
nonlinearity. Indeed, as set out in section 3.2, each transverse
segment of the cochlear partition responds nonlinearly to
forcing near its resonant frequency. A quadratic nonlinearity
Y 2 in the membrane displacement Y , for example, produces the
quadratic distortion frequency ω1+ω2. To see this, consider the
Fourier transformation of a quadratic nonlinearity, equations
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Figure 21. Schematic representation of the generation and
propagation of nonlinear combination tones within the cochlea. The
primary frequencies ω1 and ω2 travel into the cochlea as basilar-
membrane waves that cover about two cycles from the stapes to the
region xd where the distortion frequency ωd is produced. The signal
at that frequency then propagates back, experiencing an additional
phase delay.

(3.11) and (3.12). The Fourier component Ỹ (ω1 + ω2) of the
membrane displacement at the angular distortion frequency
ω1 + ω2 is then proportional to the product of the Fourier
components at the primaries, Ỹ (ω1 + ω2) ∼ Ỹ (ω1)Ỹ (ω2). It
follows that the phase of the emission equals the sum of the
primary phases plus a constant:

ϕ(ω1 + ω2) = ϕ(ω1) + ϕ(ω2) + constant, (7.1)

in which ϕ(ω) denotes the phase of the Fourier coefficient
Ỹ (ω). The phase combination

ϕ̂(ω1 + ω2) = ϕ(ω1 + ω2) − ϕ(ω1) − ϕ(ω2) (7.2)

accordingly does not depend on frequency. Although the
literature on otoacoustic emission often treats this term as the
phase of a distortion product, in the following we refer to it as
the normalized phase. A similar computation for the case of
a cubic nonlinearity reveals that the normalized phase for the
cubic emission 2ω1 − ω2 reads

ϕ̂(2ω1 − ω2) = ϕ(2ω1 − ω2) − 2ϕ(ω1) + ϕ(ω2). (7.3)

Is the normalized phase of an emission as measured in the
ear canal also constant? The answer to this question provides
clues to how signals propagate into and out of the cochlea.
Indeed, equation (7.1) holds only for the phases at the cochlear
position where the distortion is generated. The phases of
all three signals—the two primaries as well as the distortion
product—are different in the ear canal (figure 21). The signals
at the primary frequencies ω1 and ω2 progress into the cochlea
as waves on the basilar membrane that yield phase delays
�ϕ(ω1) and �ϕ(ω2) at the site where the distortion product is
generated. A signal at the distortion frequency 2ω1 − ω2 then
propagates from that site back to the stapes, which induces an
additional phase delay �ϕ(2ω1 − ω2). The phases ϕec(ω1),
ϕec(ω2), and ϕec(2ω1 + ω2) in the ear canal then follow as
ϕec(ω1) = ϕ(ω1)−�ϕ(ω1), ϕec(ω2) = ϕ(ω2)−�ϕ(ω2), and
ϕec(2ω1 −ω2) = ϕ(2ω1 −ω2)+�ϕ(2ω1 −ω2). We obtain the

normalized ear-canal phase ϕ̂ec(2ω1 + ω2) that is determined
by the travel times of the waves:

ϕ̂ec(2ω1 − ω2) = �ϕ(2ω1 − ω2) + 2�ϕ(ω1)

−�ϕ(ω2) + constant. (7.4)

A basilar-membrane wave encompasses about two cycles from
the cochlear base to the resonant position (Ulfendahl 1997,
Robles and Ruggero 2001). Because a distortion product
is generated close to the peaks of the primary waves, the
corresponding phase delays �ϕ(ω1) and �ϕ(ω2) approximate
two cycles as well, and in particular are independent of the
frequencies. The normalized emission phase in the ear canal
thus depends on the frequency only through the delay of the
backward propagation:

ϕ̂ec(2ω1 − ω2) = �ϕ(2ω1 − ω2) + constant. (7.5)

If the distortion product were to propagate backward as a
basilar-membrane wave, it would accumulate another two
cycles of phase delay. The normalized phase of the distortion
signal in the ear canal would then be independent of frequency.
How does this expectation compare to measurements?

7.2. Two components of otoacoustic emissions

Experimental investigation of the phase of otoacoustic
emissions often employs two close frequencies ω1 and ω2 and
their cubic distortion products 2ω1−ω2 and 2ω2−ω1, for these
signals occur at relatively high amplitudes. The frequency
dependence of these nonlinear combination tones is typically
measured by changing the primary frequencies across a few
octaves. The frequency ratio ω2/ω1 is held constant at values
between 1.1 and 1.3 that produce significant overlap of the two
traveling waves and therefore strong distortion. Because noise
of a physiological origin increases at low frequencies, signals
below 500 Hz are difficult to measure and most observations
employ frequencies between 1 and 10 kHz (Hall 2000).

Measurements from humans as well as other mammals
show that the lower sideband 2ω1 − ω2 has a normalized
phase that remains approximately constant as a function of
frequency. In contrast, the normalized phase of the upper
sideband 2ω2 − ω1 changes by many cycles—ten or more—
when the primary frequencies are swept across a few octaves
(figure 22(a)).

More detailed investigation shows that both the upper and
the lower sidebands consist of two components, one whose
normalized phase varies with frequency and another whose
phase does not (Knight and Kemp, 2000, 2001). Consider
a distortion at frequency ωd and the corresponding Fourier
coefficient S̃(ωd) of the acoustic signal in the ear canal. Denote

by
∣∣∣S̃(ωd)

∣∣∣ the amplitude and by φ̂(ωd) the normalized phase

of the complex Fourier coefficient. We then consider the

normalized signal Ŝ(ωd) =
∣∣∣S̃(ωd)

∣∣∣ eiφ̂(ωd) that has the same

amplitude as the original Fourier coefficient but adopts the
normalized phase. We can now compute a second Fourier
transform, S̆(τ ), with respect to the distortion frequency ωd:

S̆(τ ) =
∫

dωdŜ(ωd)e
iτωd . (7.6)
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Figure 22. Schematic illustrations of the two components of distortion-product otoacoustic emission. (a) The normalized phase of the
upper-sideband emission at 2f2 − f1 changes by many cycles as the primary frequencies are swept across a few octaves. The normalized
phase of the lower sideband 2f1 − f2 remains almost constant. (b) A second Fourier transformation S̆(τ ) of the distortion frequency’s
Fourier coefficient reveals two peaks, one at 0 ms, the short-delay component, and another around 3 ms, the long-delay component. (c) The
amplitudes of the two components depend on the ratio f2/f1 of the primary frequencies and vary between the upper and the lower sideband.

The pseudo-time τ that appears here is not an actual duration,
for the Fourier coefficients S̃(ωd) do not represent all the
different frequencies of one recording, but only the signal at
the distortion frequency ωd acquired when varying the primary
frequencies. What, then, does the pseudo-time τ signify?

The normalized signal Ŝ(ωd) can be obtained from S̆(τ )

through inverse Fourier transformation:

Ŝ(ωd) = 1

2π

∫
dτ S̆(τ )e−iτωd . (7.7)

The contribution at a certain pseudo-time τ0 has a normalized
phase φ̂0(ωd) = −τ0ωd that changes linearly with the
distortion frequency. The pseudo-time τ0 is therefore the group
delay, τ0 = −dφ̂0(ωd)/dωd, that reveals the rapidity of the
phase change.

When the second Fourier transformation (7.6) is
performed on data acquired from human ears, only two main
components emerge (figure 22(b)). The first is centered around
a delay τ = 0: the normalized phase of this component
does not depend on the frequencies of stimulation. For the
second component, however, the delay does not vanish, and
the corresponding normalized phase varies substantially with
the distortion frequency ωd.

The amplitudes of the two components depend on the ratio
ω2/ω1 of the primary frequencies as well as on the emission
frequency (figure 21(c)). For the upper-sideband emission
2ω2 − ω1 the long-delay component exceeds the short-delay
component by about 20 dB. The opposite scenario emerges
for the lower-sideband signal 2ω1 − ω2, for which the short-
delay component dominates by about 20 dB. The amplitude
of the long-delay component varies little between the upper
and lower sidebands. Instead, the difference between the two
sidebands arises primarily through the short-delay component
that is weak for the upper sideband but much stronger for the
lower one.

7.3. Green’s function and Born approximation

What is the significance of the two components, one with
a short and one with a long delay? This question remains

debated, and we describe different hypotheses below. For their
understanding we must quantify wave generation inside the
cochlea through the active process. To this end we employ
the methods of Green’s functions and perturbation theory that
have been developed for quantum field theory. We remain,
of course, within classical mechanics; quantum effects do not
appear.

For ease of presentation, we consider the one-dimensional
approximations to cochlear mechanics set out in section 2.3 for
the linear case and in section 6.3 for the nonlinear scenario. The
nonlinear wave equation (6.10) that we wish to solve contains
a cubic nonlinearity on its right-hand side and linear terms on
the left-hand side. As a first step in its solution we compute a
Green’s function, that is, a basilar-membrane velocity Ṽ (G,x0)

that satisfies

∂2
x Ṽ (G,x0) − 2iωρ0

Zh
Ṽ (G,x0) = δ(x − x0). (7.8)

The cubic nonlinearity of the wave equation (6.10) has been
replaced through Dirac’s delta function δ(x −x0) centered at a
cochlear location x0. The Green’s function Ṽ (G,x0) accordingly
describes the membrane response to periodic forcing at an
angular frequency ω and at a single cochlear location x0.

The Green’s function can be computed with the ansatz

Ṽ (G,x0) =
∫ ∞

−∞
dkg(k)e−ik(x−x0) (7.9)

in which the coefficient g(k) is complex. Because the delta
distribution can be represented as

δ(x − xd) = 1

2π

∫ ∞

−∞
dke−ik(x−x0), (7.10)

the wave equation (7.8) with forcing at x0 yields the coefficient

g(k) = 1

2πL(k)
. (7.11)

Here we have used the shorthand notation L(k) = [k2 +
2iωρ0/(Zh)]. Note that L(k) = 0 is the dispersion relation,
equation (2.33).
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Figure 23. Integration in the complex plane. The poles ±k0 of
L(k), which represent the possible wave vectors, lie in the second
and fourth quadrants of the complex plane. Depending on the sign
of x − x0, the contour of integration can be closed in the upper or
lower half-plane, yielding a contribution from the pole in
respectively the second or the fourth quadrant.

The integral in equation (7.9) can be solved by closing the
contour of integration in the complex plane (figure 23). The
residue theorem of complex analysis informs us that only the
poles of the integrand inside a closed path contribute to such a
path integral. In our situation, poles occur at those values k0 for
which L(k) vanishes, and hence at the wave vectors ±k0 that
satisfy the dispersion relation (2.33): k0 = √−2iωρ0/(Zh).
If the basilar-membrane impedance Z involves friction, the
solutions ±k0 possess small imaginary parts and lie in the
second and fourth quadrants of the complex plane. For a
cochlear location basal to the applied force, x < x0, the
amplitude of e−ik(x−x0) tends to zero in the upper half-plane
except when the imaginary part of k vanishes. We can therefore
close the integration contour in the upper half-plane. We
obtain a contribution from −k0 that describes a retrograde wave
traveling from the location of the force back to the cochlear
base:

Ṽ (G,x0) = − i

2k0
eik0(x−x0) for x < x0. (7.12)

In the opposite case, for a location apical to the forcing, x > x0,
the contour can be closed in the lower half-plane. It then yields
a contribution from k0 and thus a wave that travels forward to
the apex:

Ṽ (G,x0) = − i

2k0
e−ik0(x−x0) for x > x0. (7.13)

In the context of quantum theory the corresponding Green’s
function is known as the Feynman propagator (Peskin and
Schroeder 1995).

An inhomogeneous wave equation

∂2
x Ṽ (x) − 2iωρ0

Zh
Ṽ (x) = �(x) (7.14)

with an inhomogeneity �(x) on the right-hand side can now
be solved by integrating over the Green’s function multiplied
by �(x0):

Ṽ (x) =
∫

dx0Ṽ
(G,x0)(x)�(x0). (7.15)

The nonlinear wave equation (6.10) has an inhomogeneity
�(x) = −�

Z
∂2
x (Ṽ ∗ Ṽ ∗ Ṽ )(x) and its solution accordingly

reads

Ṽ (x) = −
∫

dx0
�

Z
Ṽ (G,x0)(x)∂2

x0
(Ṽ ∗ Ṽ ∗ Ṽ )(x0). (7.16)

Because the inhomogeneity now depends on the velocity,
however, the velocity appears not only on the equation’s left-
hand side but also in the integrand on the right-hand side. The
equation accordingly cannot be solved in a simple manner. If
we assume, however, that the nonlinearity yields only a small
correction Ṽ1 to the velocity Ṽ0 that emerges in a passive, linear
cochlea, we may approximate the nonlinear term through the
linear solution Ṽ0:

Ṽ1(x) = −
∫

dx0
�

Z
Ṽ (G,x0)(x)∂2

x0
(Ṽ0 ∗ Ṽ0 ∗ Ṽ0)(x0). (7.17)

The full solution is then Ṽ = Ṽ0 + Ṽ1. This approximation
was introduced by Max Born in the context of quantum
mechanics (Sakurai 1994). There the solution Ṽ0 to the linear,
homogeneous wave equation represents a free particle that
does not interact with others; interactions introduce nonlinear
terms and yield scattering of a wave. If the interaction strength
is small, such as for the electromagnetic interaction, one can
employ the above perturbative approach to compute the first
correction Ṽ1 to the free solution. Iterating this procedure
yields higher-order corrections until the perturbation series
converges to the full solution. For our purpose, however, the
first perturbation term (7.17) already offers insight into the
generation and propagation of otoacoustic emissions.

The Green’s function (7.12) and (7.13) together with
the Born approximation (7.17) describe the generation and
propagation of distortion products. An analysis of these
equations confirms that, as set out in section 7.1, a distortion
such as 2ω1 − ω2 is generated in the overlap region of the
traveling waves elicited by the two primary frequencies ω1

and ω2. A basilar-membrane wave at the distortion frequency
then travels back to the stapes and produces a signal in the ear
canal. Because of the scaling invariance of the traveling wave,
the phase of this emission is approximately independent of
frequency. This pathway may accordingly produce the short-
delay component of an otoacoustic emission.

Although theory suggests that the short-delay component
of distortion-product otoacoustic emissions emerges through
reverse basilar-membrane waves, measurements have not
detected such signals (Ren 2004, Hea et al 2007, He et al 2008).
It remains unclear how else this component of otoacoustic
emissions might emerge from the cochlea. Additional
types of waves, for example those involving deformation
of the cochlear bone, might be involved (Tchumatchenko
and Reichenbach 2014). Such waves could also underlie
bone conduction, the perception of sound through vibration
of the skull that does not require a functional middle ear
(Tonndorf 1976).

7.4. Waves on Reissner’s membrane

How does the long-delay component of a distortion-product
otoacoustic emission arise? One hypothesis is that a forward-
propagating distortion wave is reflected from inhomogeneities
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along the basilar membrane (Zweig and Shera 1995, Shera
and Guinan 1999, Kalluri and Shera 2001). If only a single
inhomogeneity were involved, the phase of the emission would
depend on the phase of the wave at the cochlear position
of that inhomogeneity. Because the wave’s phase at such a
fixed cochlear location varies with frequency, the phase of the
resulting emission should depend on the frequency as well.

Many inhomogeneities are required, however, for
reflection to operate across a range of distortion frequencies.
When a distortion wave is reflected by multiple scatterers, it
is no longer clear that its phase changes systematically with
frequency. Indeed, if a large number of inhomogeneities near
the peak of the wave were to cause reflections, the phase
of the resulting wave should be roughly independent of the
frequency, for the irregularities in the location of the scatterers
would approximately average out. Modeling suggests that,
under certain circumstances, systematic phase changes may
nevertheless result (Zweig and Shera 1995, Kalluri and Shera
2001). Experimental investigations of the matter are difficult
because the nature of the hypothesized reflectors remains
unclear.

We have recently proposed an alternative means by
which the phase-changing component of otoacoustic emissions
could arise (Reichenbach et al 2012). This mechanism
involves waves on Reissner’s membrane, which runs parallel
to the basilar membrane from the cochlear base to the
apex. Reissner’s membrane is often ignored when describing
cochlear hydrodynamics, for its compliance, at least near the
base, greatly exceeds that of the basilar membrane. It has
therefore been assumed that Reissner’s membrane follows the
fluid motion elicited by the basilar-membrane wave.

Reissner’s membrane can sustain its own kind of surface
waves. To show this, we have analyzed a two-dimensional
cochlear model that describes the inner ear’s vertical as well
as its longitudinal extent (figure 24). The pressures within the
three chambers delineated by the two membranes constitute
three degrees of freedom, and three types of waves can
accordingly arise.

First, a fast sound wave can propagate along the cochlea
through fluid compression and expansion. For this wave the
pressures in all three chambers coincide at each longitudinal
position, such that neither membrane is displaced. The wave
is therefore not of physiological importance.

Second, for frequencies above a few kilohertz, the well-
known traveling wave on the basilar membrane emerges. With
the exception of its peak region, its wavelength exceeds the
height of the chambers. The fluid velocity accordingly does
not vary much with vertical distance (figure 2), so Reissner’s
membrane and the basilar membrane move by comparable
amounts. Because Reissner’s membrane is much floppier,
however, the propagation of the wave is dominated by the
material properties of the basilar membrane.

Third, a novel surface wave can travel on Reissner’s
membrane. Because of the membrane’s compliance, the
length of this wave is much less than the channel’s height,
at least for frequencies above a few kilohertz. A wave on
Reissner’s membrane therefore penetrates to only a small
degree into the fluid surrounding the membrane and does not
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Figure 24. Schematic diagrams of waves on the parallel basilar
(BM) and Reissner’s membranes (RM). (a) In a two-dimensional
model of the inner ear, three chambers of height h are delineated by
Reissner’s membrane and the basilar membrane. (b) The
basilar-membrane wave elicits comparable motion of both
membranes except in the peak region where the wavelength
becomes shorter and fluid coupling between the membranes
weakens. (c) A short-wavelength wave can propagate exclusively on
Reissner’s membrane.

elicit motion of the basilar membrane. Because this wave
cannot excite hair cells, it appears to be of little importance
for the physiological functioning of the inner ear. It can,
however, transport a distortion product from its generation
site back to the cochlear base. Indeed, the fluid dynamics
near the basilar membrane at the distortion frequency does
elicit a disturbance that propagates as a wave on Reissner’s
membrane, both to the cochlear apex and to the base. Laser
interferometry in preparations of the chinchilla’s cochlea
in vivo demonstrate that basilar-membrane distortion yields
Reissner’s membrane waves (Reichenbach et al 2012). Their
propagation has been quantified using the approach outlined
above, namely Green’s functions and the Born approximation,
and the dispersion relation has been confirmed by laser-
interferometric measurements in several rodent species.

The waves on Reissner’s membrane do not exhibit the
scaling symmetry of waves on the basilar membrane. Because
a wave on Reissner’s membrane has a comparatively short
wavelength, a distortion product that propagates back to the
stapes by this means accumulates a phase delay of many cycles,
depending on the frequency. Our numerical computations
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show that this phase delay matches that of the long-delay
component of distortion-product otoacoustic emissions.

For frequencies below a few kilohertz, a traveling wave
peaks near the cochlear apex. The stiffness of the basilar
membrane there falls to a value near that of Reissner’s
membrane, which implies that a basilar-membrane wave is
shaped by the material properties of both structures. Moreover,
the wavelength of the erstwhile Reissner’s membrane wave
exceeds the height of the chambers, so that disturbance couples
to motion of the basilar membrane. The emerging waves
can therefore no longer be separated into distinct basilar-
membrane and Reissner’s membrane waves. Instead, the two
wave modes involve the mechanical properties and motion
of both membranes. The characteristics of these waves and
how they influence apical cochlear mechanics remain open
questions.

8. Conclusions

The compact, complex, and delicate structure of the cochlea
and its location in the hard bone of the skull present formidable
challenges to the investigation of auditory transduction.
During the past two decades, however, these problems
have yielded to progressive technical advances, especially
the systematic investigation of hair cells in vitro and
the improvement of interferometric measurements in vivo.
Contemporary data are of a quality that permits rigorous
comparison of experimental data with theoretical models,
which in turn have increased in sophistication and accuracy.

From these efforts has emerged our current picture of the
active cochlea. Through biophysical specializations at the
molecular, cellular, and organ level, this receptor organ shapes
its inputs even as it transduces them into electrical signals.
The inner ear as a whole employs sophisticated hydrodynamic
effects to spatially separate the different frequency components
of a sound. The mechanosensitive hair cells can amplify the
vibrational amplitude in a frequency band and boost it by
several orders of magnitude, mechanical activities that arise
from ion channels and molecular motors within the cells. By
operating on the verge of dynamical instability, the cochlea’s
active process implements the ear’s profound amplification, its
remarkable frequency selectivity, and its incredible dynamic
range.

Although many aspects of cochlear mechanics and hair-
cell operation are now well understood, several important
issues remain debated. The first is the molecular workings of
the mechanotransduction apparatus. Identifying the molecular
structure of the mechanotransduction channel, the nature of
the gating spring, and its relationship to the tip link will
be key steps. Next, several issues of optimality would be
worth exploring. How do the number and lengths of the
stereocilia in a hair bundle affect its mechanical sensitivity
and frequency selectivity? Where does a hair bundle reside
in vivo with respect to the Hopf bifurcation? Does this
operating point correspond to an optimum in the signal-to-
noise ratio, the quality factor of tuning, or the sensitivity
to threshold stimuli? Third, the implementation of the
active process within the organ of Corti, as potentially

shaped by a contribution from both hair-bundle forces and
electromotile length changes, remains to be clarified. We
have outlined some of the potentially important steps toward
resolving this issue, including nonlinear mathematical analysis
and novel experimental techniques such as optical-coherence
tomography. These approaches may reveal distinct versions of
the active process in the basal and apical regions of the cochlea.
Fourth, the origin and transmission modes of otoacoustic
emission remain debated. These issues are important, for
otoacoustic emissions are a key signature of the cochlear
active process and their behavior can confirm the healthy
functioning of the inner ear. Progress will likely originate
in refined laser-interferometric measurements coupled with
computational modeling of cochlear fluid dynamics.

The ear’s astonishing performance can inspire technology,
and engineering principles can in turn instruct us about the
ear’s operation. The initial proposition by Gold that the ear
employs active feedback was motivated by the usage of positive
feedback in contemporary radio receivers. The concept of a
Hopf bifurcation in cochlear mechanics has conversely led to
the construction of a bionic ear (van der Vyer 2006). We
have shown how a proposed mechanism of unidirectional
amplification for apical cochlear mechanics can be applied
to construct an ultra-sensitive, non-distorting microphone.
Because natural selection and engineering must solve similar
problems, we expect that they will continue to mutually inform
each other and hence our understanding of the physics of
hearing.
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Martin P, Hudspeth A J and Jülicher F 2001 Comparison of a hair
bundle’s spontaneous oscillations with its response to
mechanical stimulation reveals the underlying active process
Proc. Natl Acad. Sci. USA 98 14380–5

Martin P, Mehta A D and Hudspeth A J 2000 Negative hair-bundle
stiffness betrays a mechanism for mechanical amplification by
the hair cell Proc. Natl Acad. Sci. USA 97 12026–31

Meaud J and Grosh K 2011 Coupling active hair bundle mechanics,
fast adaptation, and somatic motility in a cochlear model
Biophys. J. 100 2576–85

Miranda-Rottmann S, Kozlov A and Hudspeth A J 2010 Highly
specific alternative splicing of transcripts encoding BK
channels in the chicken’s cochlea is a minor determinant of the
tonotopic gradient Mol. Cell Biol. 30 3646–60

Misra G, Dickinson R B and Ladd A J 2010 Mechanics of Vorticella
contraction Biophys. J. 98 2923–32

Morse 1925 Radio Beam and Broadcast (London: Ernest Benn)
Mountain D C 1980 Changes in endolymphatic potential and

crossed olivocochlear bundle stimulation alter cochlear
mechanics Science 210 71–2

Murugasu E and Russell I J 1996 The effect of efferent stimulation
on basilar membrane displacement in the basal turn of the
guinea pig cochlea J. Neurosci. 16 325–32
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Ó Maoiléidigh D and Jülicher F 2010 The interplay between active
hair bundle motility and electromotility in the cochlea
J. Acoust. Soc. Am. 128 1175–90
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Patel S H, Salvi J D, Ó Maoiléidigh D and Hudspeth A J 2012
Frequency-selective exocytosis by ribbon synapses of hair cells
in the bullfrog’s amphibian papilla J. Neurosci. 32 13433–8

Patuzzi R and Rajan R 1990 Does electrical stimulation of the
crossed olivo-cochlear bundle produce movement of the organ
of Corti? Hear. Res. 45 15–32

Pearce J 2004 Thomas Gold, astrophysicist and innovator, is dead at
84 New York Times 24 June 2004

Peng A W, Effertz T and Ricci A J 2013 Adaptation of mammalian
auditory hair cell mechanotransduction is independent of
calcium entry Neuron 80 960–72

Pickles J O 1996 An Introduction to the Physiology of Hearing
(San Diego, CA: Academic)

Peskin M E and Schroeder D V 1995 An Introduction To Quantum
Field Theory (Boston: Addison-Wesley Advanced Book
Program)

Pickles J O, Comis S D and Osborne MP 1984 Cross-links between
stereocilia in the guinea pig organ of Corti, and their possible
relation to sensory transduction Hear. Res. 15 103–12

Powers R J, Roy S, Atilgan E, Brownell W E, Sun S X,
Gillespie P G and Spector A A 2012 Stereocilia membrane
deformation: implications for the gating spring and
mechanotransduction channel Biophys. J. 102 201–10

Pringle J W S 1967 The contractile mechanism of insect fibrillar
muscle Prog. Biophys. Molec. Biol. 17 1–60

Pumphrey R J and Gold T 1947 Transient reception and the degree
of resonance of the human ear Nature 160 124–5

Reichenbach T and Hudspeth A J 2010a Dual contribution to
amplification in the mammalian inner ear Phys. Rev. Lett.
105 118102

Reichenbach T and Hudspeth A J 2010b A ratchet mechanism for
low-frequency amplification in mammalian hearing Proc. Natl
Acad. USA 107 4973–8

Reichenbach T and Hudspeth A J 2011 Unidirectional mechanical
amplification as a design principle for an active microphone
Phys. Rev. Lett. 106 158701

Reichenbach T, Stefanovic A, Nin F and Hudspeth A J 2012
Waves on Reissner’s membrane: a mechanism for the
propagation of otoacoustic emissions from the cochlea Cell
Rep. 1 374–84

Ren T 2002 Longitudinal pattern of basilar membrane vibration in
the sensitive cochlea Proc. Natl Acad. Sci. USA 99 17101–6

Ren T 2004 Reverse propagation of sound in the gerbil cochlea
Nature Neurosci. 7 333–4

Ren T, He W and Gillespie P G 2011 Measurement of cochlear
power gain in the sensitive gerbil ear Nature Commun. 2 216

43

http://dx.doi.org/10.1016/j.bpj.2012.05.014
http://dx.doi.org/10.1017/S0022112081001560
http://dx.doi.org/10.1103/PhysRevLett.103.250601
http://dx.doi.org/10.1103/PhysRevLett.90.058101
http://dx.doi.org/10.1038/365838a0
http://dx.doi.org/10.1121/1.405716
http://dx.doi.org/10.1016/j.heares.2005.10.007
http://dx.doi.org/10.1121/1.419858
http://dx.doi.org/10.1146/annurev.bb.24.060195.000423
http://dx.doi.org/10.1016/S0006-3495(95)79883-6
http://dx.doi.org/10.1073/pnas.96.25.14306
http://dx.doi.org/10.1073/pnas.251530498
http://dx.doi.org/10.1073/pnas.251530598
http://dx.doi.org/10.1073/pnas.210389497
http://dx.doi.org/10.1016/j.bpj.2011.04.049
http://dx.doi.org/10.1128/MCB.00073-10
http://dx.doi.org/10.1016/j.bpj.2010.03.023
http://dx.doi.org/10.1126/science.7414321
http://dx.doi.org/10.1073/pnas.0403020101
http://dx.doi.org/10.1016/S0378-5955(98)00133-6
http://dx.doi.org/10.1121/1.415412
http://dx.doi.org/10.1016/S0378-5955(97)00147-0
http://dx.doi.org/10.1073/pnas.1302911110
http://dx.doi.org/10.1121/1.3463804
http://dx.doi.org/10.1073/pnas.1120298109
http://dx.doi.org/10.1121/1.423083
http://dx.doi.org/10.1038/990092
http://dx.doi.org/10.1016/j.neuron.2013.06.019
http://dx.doi.org/10.1523/JNEUROSCI.1246-12.2012
http://dx.doi.org/10.1016/0378-5955(90)90179-S
http://dx.doi.org/10.1016/j.neuron.2013.08.025
http://dx.doi.org/10.1016/0378-5955(84)90041-8
http://dx.doi.org/10.1016/j.bpj.2011.12.022
http://dx.doi.org/10.1016/0079-6107(67)90003-X
http://dx.doi.org/10.1038/160124b0
http://dx.doi.org/10.1103/PhysRevLett.105.118102
http://dx.doi.org/10.1073/pnas.0914345107
http://dx.doi.org/10.1103/PhysRevLett.106.158701
http://dx.doi.org/10.1016/j.celrep.2012.02.013
http://dx.doi.org/10.1073/pnas.262663699
http://dx.doi.org/10.1038/nn1216
http://dx.doi.org/10.1038/ncomms1226


Rep. Prog. Phys. 77 (2014) 076601 Review Article

Rhode W S 1971 Observations of the vibration of the basilar
membrane in squirrel monkeys using the Mössbauer technique
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