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Individual differences in the 
attentional modulation of the 
human auditory brainstem 
response to speech inform on 
speech-in-noise deficits
Marina Saiz-Alía1, Antonio Elia Forte2 & Tobias Reichenbach  1

People with normal hearing thresholds can nonetheless have difficulty with understanding speech 
in noisy backgrounds. The origins of such supra-threshold hearing deficits remain largely unclear. 
Previously we showed that the auditory brainstem response to running speech is modulated 
by selective attention, evidencing a subcortical mechanism that contributes to speech-in-noise 
comprehension. We observed, however, significant variation in the magnitude of the brainstem’s 
attentional modulation between the different volunteers. Here we show that this variability relates 
to the ability of the subjects to understand speech in background noise. In particular, we assessed 43 
young human volunteers with normal hearing thresholds for their speech-in-noise comprehension. 
We also recorded their auditory brainstem responses to running speech when selectively attending to 
one of two competing voices. To control for potential peripheral hearing deficits, and in particular for 
cochlear synaptopathy, we further assessed noise exposure, the temporal sensitivity threshold, the 
middle-ear muscle reflex, and the auditory-brainstem response to clicks in various levels of background 
noise. These tests did not show evidence for cochlear synaptopathy amongst the volunteers. 
Furthermore, we found that only the attentional modulation of the brainstem response to speech was 
significantly related to speech-in-noise comprehension. Our results therefore evidence an impact of top-
down modulation of brainstem activity on the variability in speech-in-noise comprehension amongst 
the subjects.

Understanding speech in noisy backgrounds such as other competing speakers is a challenging task at which 
humans excel1,2 It requires the separation of different sound sources, selective attention to the target speaker, and 
the processing of degraded signals3–5 Hearing impairment such as resulting from noise exposure often leads to 
an increase of hearing thresholds, a reduction in the information conveyed about a sound to the central auditory 
system, and thus to greater difficulty in understanding speech in noise6–8 However, even listeners with normal 
hearing thresholds can have problems with understanding speech in noisy environments9,10.

An extensive neural network of efferent fibers can feed information from the central auditory cortex back 
to the auditory brainstem and even to the cochlea11,12. Research on the role of these neural feedback loops for 
speech-in-noise listening has mostly focused on the medial olivocochlear reflex (MOCR), in which stimulation of 
the medial olivocochlear fibers that synapse on the outer hair cells in the cochlea reduces cochlear amplification 
across a wide frequency band13. Computational modelling as well as animal studies have shown that such reduced 
broad-band amplification can improve the signal-to-noise ratio of a transient signal embedded in background 
noise14–17. However, it remains debated whether the reduction of cochlear amplification through the MOCR con-
tributes to better speech-in-noise comprehension in humans: some studies found evidence for this hypothesis18–22 
whereas others did not23,24 and yet others found the opposite behaviour25,26.
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We recently demonstrated a neural mechanism for listening in noisy backgrounds that involves the extensive 
efferent connections between the central auditory cortex and the brainstem27–29. In particular, we devised a math-
ematical method for measuring the human brainstem response to the periodicity in the voiced parts of speech, 
the temporal fine structure, and showed that this subcortical response was stronger when a speaker was attended 
than when he or she was ignored30,31. Importantly, and different from the MOCR, this attentional modulation did 
not occur across a broad frequency band but instead relied on the frequency-specificity of the brainstem response 
to the temporal fine structure. As another difference to the MOCR, the response was measured from the brain-
stem instead of from the cochlea.

Because we observed significant individual differences in the strength of the attentional modulation of the 
brainstem response to speech, we wondered if this was related to the individual’s ability to understand speech in 
noise. In particular, we hypothesized that a larger attentional modulation might lead to better speech-in-noise 
comprehension. Alternatively, we hypothesized that a larger attentional modulation might indicate larger diffi-
culty with speech-in-noise comprehension and therefore worse performance in speech-in-noise listening.

A potential source of variation in the brainstem response to speech, as well as in speech-in-noise compre-
hension, is cochlear synaptopathy, a loss of synaptic connection between the auditory-nerve fibers and the 
mechanosensitive hair cells in the inner ear32. Because synapses of supra-threshold auditory-nerve fibers are 
predominantly affected, the condition does not lead to elevated hearing thresholds and has therefore also been 
referred to as hidden hearing loss33,34. To investigate our hypotheses regarding a correlation between the atten-
tional modulation of the brainstem response to speech and speech-in-noise comprehension, we therefore sought 
to control for cochlear synaptopathy.

The most direct non-invasive measure of auditory-nerve activity in humans, and therefore potentially of coch-
lear synaptopathy, is wave I of the click-evoked auditory brainstem response. Animal studies have indeed shown 
that cochlear synaptopathy leads to a reduction in the amplitude of wave I. A reduced wave I has also been found 
to correlate with noise exposure of human subjects in some studies35 although not in others36,37. A difficulty with 
wave I as a clinical measure is, however, its significant variability across individual subjects, suggesting a need 
for more robust measure of cochlear synaptopathy. Rodent studies in conjunction with investigations on human 
subjects have suggested that the latency shift of the larger wave V, obtained from presenting clicks in varying levels 
of background noise, informs on cochlear synaptopathy38,39. Because cochlear synaptopathy probably decreases 
the timing precision of spikes in the auditory nerve, people with the condition should perform worse on low-level 
auditory tasks that rely on timing information, such as detecting small interaural timing differences40. Moreover, 
the middle-ear muscle reflex has been shown to be reduced by cochlear synaptopathy in rodents and may there-
fore serve as a clinical measure of this peripheral hearing impairment as well41,42. Here we have included the 
threshold for interaural timing differences, the latency shift of wave V, and the threshold of the middle-ear muscle 
reflex to control for cochlear synaptopathy.

Materials and Methods
Participants. 43 healthy young volunteers with an age of 24 ± 3 years (mean and standard deviation), sev-
enteen of which were female, were recruited from Imperial College London. All subjects were native English 
speakers, had no history of hearing or neurological impairments, and provided written informed consent. The 
experimental procedures were approved by the Imperial College Research Ethics Committee, and were performed 
in accordance with all relevant guidelines and regulations. Informed consent was obtained from all participants.

Test environment. All testing was carried out in a sound-proof, electrically-insulated and semi-anechoic 
room. A personal computer outside the room controlled the audio presentation and data acquisition. Sound stim-
uli were presented at a sampling frequency of 44.1 kHz through a high-performance sound card (Xonar Essence 
STX, Asus, U.S.A.). They were delivered through insert earphones (ER-3C, Etymotic, U.S.A.). Sound intensity 
was calibrated with an ear simulator (Type 4157, Brüel & Kjaer, Denmark). Unless otherwise stated, the sound 
was presented diotically.

Pure-tone audiometry. We measured audiometric thresholds at 250 Hz, 500 Hz, 1 kHz, 1.5 kHz, 2 kHz, 
3 kHz, 4 kHz, 6 kHz and 8 kHz. The thresholds were assessed behaviourally using Otosure (Amplivox, U.K.).

Noise exposure. Lifetime noise exposure was estimated using a structured interview43. This interview identi-
fied different sources of recreational or occupational exposure to noise of a high level, exceeding 80 dBA. The cor-
responding sound level was estimated through a list of the most common activities involving high noise exposure, 
such as visiting clubs with amplified music, attending events with live amplified music, listening to music through 
earphones, or riding the tube. For each free-field activity, the sound level was computed based on the vocal effort 
required to hold a conversation at a distance of 1.2 m. Reported vocal effort was converted to dBA using a speech 
communication table43. The resulting noise exposure was then quantified by the units of noise exposure U:

U T
2080

10
L A 90

10= ∗
− −

in which T is the total exposure time in hours, L is the noise level in dBA, and A is the attenuation of ear protec-
tion in dBA44. The measure U is proportional to the total energy of exposure (above 80 dBA). The lifetime noise 
exposure of a subject followed from adding the noise exposures that resulted from each source the volunteer had 
been exposed to.

Speech-in-noise perception. The ability of each participant to understand speech in noise was quanti-
fied using the 50% speech reception threshold for sentences in noise (SRTn), that is, the signal-to-noise ratio 
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(SNR) at which the participant could correctly identify 50% of words in a given sentence that was embedded in 
background noise. We employed semantically unpredictable sentences spoken by a female speaker together with 
four-talker babble noise. The target speech was presented at 70 dBA while the SNR varied over trials.

We implemented an adaptive procedure, a fixed step staircase45. After listening to a sentence the subject 
repeated what they understood. The verbal response was recorded with a microphone and evaluated through 
automatic speech recognition (Google Speech API). The noise level of the following sentence was adapted based 
on the subject’s response.

All participants first listened to ten sentences with different SNRs, ranging from 12 to −5 dB, in order to fami-
larise themselves with the task. The adaptive procedure then started with an initial SNR of 10 dB. The SNR was 
changed by a step size of 3 dB during the first four reversals, and the step size was decreased to 1 dB for the next 
twelve reversals. The SRTn was computed as the mean of the last six reversals. It took about 15 minutes to estimate 
the SRTn for a subject.

Sensitivity to interaural timing differences (ITD). To obtain a binaural measure of temporal coding, we 
assessed the threshold for detecting small timing differences in sound presented to the left and to the right ear. In 
particular, we employed a 4 kHz tone that was amplitude-modulated at 50 Hz38,46. The carrier phase was identical 
in the two ears, but an ITD was applied to the envelope so that the sound to the right ear was leading. The signals 
were embedded in noise that extended from 20 Hz to 20 kHz and that had a notch around the carrier frequency 
of 4 kHz, with a bandwidth set to the equivalent rectangular bandwidth (ERB) of a 4 kHz channel (i.e. 456.46 Hz). 
We employed different noise for each trial. The noise level was chosen such that the resulting signal had an SNR 
of 10 dB (broadband rms). The sounds were presented at 80 dB SPL.

The threshold for detecting the ITDs was determined using a three-cue, two-alternative forced-choice adap-
tive procedure. The first of the three consecutive sounds always contained a stimulus with an ITD of 0 μs and 
served as reference. Either the second or the third sound, at equal probability, contained an ITD that was not zero. 
The listener’s task was to detect and identify the sound with the non-vanishing ITD. The initial ITD of 1,200 μs 
was iteratively updated using a two-up one-down procedure47. The initial step size of 100 μs was halved after five 
reversals. A total of ten reversals were used and the threshold was calculated from the last five reversals. Up to 30 
training trials with the initial ITD were performed before the start of the adaptive procedure to familiarize the 
participant with the task. The exercise was, however, nonetheless challenging to some subjects, and eleven vol-
unteers were unable to perform it. The results from this measure should thus be interpreted with caution as they 
may not generalize to the population. It took at most 15 minutes to carry out the test for an individual subject.

Click-evoked auditory-brainstem responses in noise. We measured auditory brainstem responses 
from five passive Ag/AgCl electrodes (Multitrode, BrainProducts, Germany). Two electrodes were positioned 
at the cranial vertex (Cz), two further electrodes on the left and right mastoid processes, and the remaining elec-
trode served as ground and was positioned on the forehead. We lowered the impedance between each electrode 
and the skin to below 5 kΩ using abrasive electrolyte-gel (Abralyt HiCl, Easycap, Germany). The electrode on the 
left mastoid, at the cranial vertex and the ground electrode were connected to a bipolar amplifier with low-level 
noise and a gain of 50 (EP-PreAmp, BrainProducts, Germany). The remaining two electrodes were connected to 
a second identical bipolar amplifier. The output from both bipolar amplifiers was fed into an integrated ampli-
fier (actiCHamp, BrainProducts, Germany). The recordings where thereby low-pass filtered through a hardware 
anti-aliasing filter with a corner frequency of 4.9 kHz, and were sampled at 25 kHz. The audio signals were meas-
ured by the integrated amplifier as well, using an acoustic adapter (Acoustical Stimulator Adapter and StimTrak, 
BrainProducts, Germany). All data were acquired through PyCorder (BrainProducts, Germany). The simultane-
ous measurement of the audio signal and the brainstem response from the integrated amplifier was employed to 
temporally align both signals to a precision of less than 40 µs, the inverse of the sampling rate (25 kHz). A delay of 
1 ms of the acoustic signal produced by the earphones was taken into account.

We presented the volunteers with clicks of 80 dB peSPL (IEC 60645-3 peSPL calibration method) that were 
embedded in four different levels of broadband noise: 42 dB SPL, 52 dB SPL, 62 dB SPL and 72 dB SPL38. For each 
noise level we presented 3,000 clicks in blocks of 500 clicks, with equal numbers of rarefaction and condensation 
clicks per condition. The order in which the blocks with different polarities and the different noise levels were 
presented was randomized across participants. Clicks were presented at a rate of 10 Hz with 20 ms interclick jit-
ter to avoid any stationary interference, such as from electrical noise. The recorded data were band-pass filtered 
between 100 and 2,000 Hz (4th order Butterworth IIR, 25 Hz and 500 Hz transition bands for low and high cutoff 
frequencies, respectively). The data was divided into segments that ranged from −5 to 10 ms relative to the onset 
of each click. We then computed the average response across the two channels from both hemispheres and aver-
aged over the different segments to obtain the ABR waveform. All participants except one showed remarkably 
clear ABR waveforms, with the exception of the noise level of 72 dB SPL where wave V was occasionally not iden-
tifiable. These recordings took around 30 minutes per subject, including the electrode setup.

The latency of wave V was then obtained for each noise level as the peak amplitude between the delays of 
6–10 ms. The peak was considered as significant if it exceeded the 95% percentile of the recording’s noise floor, 
which was established from the delays of −5 to 0 ms, for each noise level. This criterion excluded wave V in the 
72 dB SPL condition for seven subjects. The latency change with increasing noise was then computed by a linear 
fit of the wave V latency versus the noise level.

Middle-ear muscle reflex (MEMR). Middle-ear muscle reflex thresholds were measured with a GSI 
Tympstar diagnostic middle-ear analyzer using 226 Hz probe tone. Stimuli were ipsilateral pulsed pure tones of 
frequencies of 1 kHz and 4 kHz, presented in the left ear (1.5 s on and off time). Reflex thresholds were determined 
using changes in middle-ear compliance following the presentation of the elicitor. A reflex response was defined 
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as a reduction in compliance of 0.02 mmho or greater over two consecutive trials, to ensure that the response was 
not artefactual. For each tone, the stimulus level started at 75 dB and increased in 2 dB steps until the threshold 
criterion was reached. The MEMR threshold was then computed as the difference between threshold responses at 
4 kHz and at 1 kHz. This differential measure has been suggested to provide increased sensitivity to noise-induced 
damage, which predominantly affects the 3–6 kHz region44.

Three participants showed unstable compliance responses with atypical morphology due to a poor fit of the 
probe. We therefore tested their right ear instead.

Auditory brainstem responses to speech (speech-ABR) and attentional modulation. Auditory 
brainstem responses to speech were measured through the setup described in the subsection on click-evoked 
brainstem recordings. Subjects listened to two competing voices.

Samples of continuous speech from a male and a female speaker were obtained from publicly available audi-
obooks (https://librivox.org). In particular, we used extracts from “Tales of Troy: Ulysses the sacker of cities” and 
“The green forest fairy book”, narrated by James K. White, as well as chapters from “The children of Odin”, read by 
Elizabeth Klett. All samples had a duration of at least two minutes and ten seconds. To construct speech samples 
with two competing speakers, samples from the male and from the female speaker were normalized to the same 
root-mean-square amplitude and then superimposed. Stimuli were delivered at 72 dBA.

The experimental design employed two conditions, attention to the female voice and attention to the male 
voice. For attending the female voice, subjects were asked to listen to the female speaker and to ignore the male 
one, and vice versa for the other condition. For each condition we employed four samples, yielding around ten 
minutes of recording per condition. The order of the presentation of the different conditions was randomized 
across participants. Comprehension questions were asked at the end of each part in order to verify the subject’s 
attention to the corresponding story. All subjects answered the questions correctly.

To obtain the speech-ABR we computed a fundamental waveform of each voiced part of a speech signal. 
The fundamental waveform was a temporal signal that, at each time point, oscillated at the fundamental fre-
quency of the voiced speech (Fig. 1a). It was computed using empirical mode decomposition (EMD) of the speech 
stimuli30,48.

We then computed the cross-correlation of the fundamental waveform with the brainstem recording. To this 
end we band-pass filtered the brainstem response between 100–300 Hz (high-pass filter: FIR, transition band 
from 90–100 Hz, stopband attenuation −80 dB, passband ripple 1 dB, order 6862; low-pass filter: FIR, transition 
band 300–360 Hz, stopband attenuation −80 dB, passband ripple 1 dB, order 1054) and compensated for the 
filter delay. The first ten seconds of each recording were discarded to remove any transient activity. The data were 
then divided into 40 epochs of three seconds in duration and the remaining data, if any, were discarded. For each 

Figure 1. Auditory brainstem response to running speech. (a) Speech (black) consists of many voiced parts 
that are characterized by a fundamental frequency that varies over time. We compute a fundamental waveform 
(yellow) that, at each time point, oscillates at the fundamental frequency. (b) We compute the cross-correlation 
of the brainstem response with the fundamental waveform to measure the brainstem response to speech when 
subjects are presented with two competing speakers, a male and a female voice. The envelope of the cross-
correlation of the neural recording with the fundamental waveform of the male speaker (blue line: population 
mean, blue shading: population standard error of the mean) peaks at 8.3 ms. The female voice causes a similar 
brainstem response, although at a smaller magnitude (red line: population mean, red shading: population 
standard error of the mean).
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segment, the brainstem response was cross-correlated with the corresponding segment of the fundamental wave-
form as well as with its Hilbert transform, yielding a complex cross-correlation. The complex cross-correlation 
for an individual subject and a particular condition was obtained by averaging over all corresponding segments. 
We determined the latency and the amplitude of the peak for each individual.

To determine whether the peak in the cross-correlation obtained for a certain subject and a particular condi-
tion was significant, the responses were compared to those of a noise model. For each participant, a null model 
was computed by cross-correlating the brainstem response to the fundamental waveform of a different story 
that had not been heard by the participant. The noise floor was determined as the 80th percentile of the complex 
cross-correlation in the noise model, for latencies from −100 ms to 100 ms. This criterion excluded four and five 
participants regarding attending to the male voice and attending to the female voice, respectively. Two additional 
subjects were excluded due to technical problems during the recording (an uncharged battery in one case and 
loose earphone connection in the other case). One outlier was removed from the measurement of the brainstem 
response to the female voice when the latter was attended.

To investigate the attentional modulation of the brainstem response to speech, we computed normalized dif-
ferences. Denote by rM

A( ) the peak amplitude of the complex cross-correlation of the brainstem recording with the 
fundamental waveform of the male voice, when the male speaker was attended, and by rM

I( ) when the male speaker 
was ignored. The relative attentional modulation of the brainstem response to the male voice, that is, the difference 
between the brainstem response to the male speaker in the two conditions divided by the average brainstem 
response, followed as A 2M
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Statistical analysis. The acquired data were checked for normality through the Kolmogorov–Smirnov test. 
All measurements, that is, the SRTn, noise exposure, ITD threshold, ABR latency shift, MEMR threshold, the 
brainstem responses to attended speech as well as the relative attentional modulation of the brainstem response to 
the male and the female voices, followed a normal distribution. We therefore employed the corresponding para-
metric tests for subsequent hypothesis testing. The results were corrected for multiple comparisons by controlling 
the false discovery rate (FDR; q) at 10%. We report the FDR-threshold, that is, the largest value qi/m that satisfies 
p(i) ≤ qi/m, for the ith ordered p-value of the m performed tests. We employed the FDR correction rather than a 
family wise error rate such as in the Bonferroni correction due to its greater statistical power49.

Results
The pure-tone audiometry revealed that all participants had pure-tone hearing thresholds better than 20 dB 
hearing level in both ears at octave frequencies between 250 Hz and 8 kHz (Fig. 2). Sensorineural hearing loss 
was therefore not present amongst the subjects. However, participants reported a wide range of life-time noise 
exposure that spanned four orders of magnitude, from 0.005 for the participant with the least exposure to 23 for 
the participant that reported the highest noise encounter. The geometric mean of the noise exposures across the 
participants was 6.26. The SRTn varied as well, between −4.2 dB SNR and 0 dB SNR with a population mean of 
−2.0 dB SNR.

We assessed the auditory brainstem response at the fundamental frequency of running speech by correlating 
the brainstem recording with the fundamental waveform of the voiced parts of speech (Fig. 1). We obtained peaks 

Figure 2. Audiometric thresholds. All participants have normal hearing: their hearing thresholds averaged over 
the left and right ear are below 10 dBHL (black dots: population mean, grey shading: population standard error 
of the mean).
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in the cross-correlation at an average delay of 8.3 ± 0.3 ms, evidencing the subcortical origin of the response. 
Furthermore, confirming the results from our previous study, we found that the amplitude at the peak was mod-
ulated by selective attention30,31. The neural response to the male voice was larger when the subject attended the 
male speaker, and we found the same attentional effect for the female voice as well (Fig. 3). In particular, the 
relative attentional modulation of the brainstem response to the male voice, AM, as well as the relative attentional 
modulation of the brainstem response to the female voice, AF, were significantly greater than zero (population 
average, AM: p = 0.02, AF: p = 0.003; two-tailed one-sample Student’s t-tests).

The attentional modulation of the brainstem response was comparable between the male and the female voice. 
The relative attentional modulation of the brainstem response to the male voice, AM, was indeed not significantly 
larger than that for the female voice, AF (p = 0.6, two-tailed two-sample Student’s t-test).

Because we sought to investigate a potential correlation between the attentional modulation and the 
speech-in-noise performance, we were interested in the between-subject variability in the attentional modula-
tion. We found that the variability in AM was significantly larger than the variability in AF (p = 0.0006, one-sided 
two-sample F-test for equal variances). This difference might have arisen due to differences in the fundamental 
frequencies between the male and the female voice. We found that the female voice had a mean fundamental fre-
quency of 175 ± 39 Hz, which was significantly different from the male’s fundamental frequency of 123 ± 30 Hz, 
(mean and standard deviation, p = 0.001, two-tailed two-sample Student’s t-test). A higher frequency causes a 
smaller brainstem response, and we found indeed that the brainstem response to the male voice, when attended, 
was significantly larger than the brainstem response to the female voice when attended (p = 0.05, two-tailed 
two-sample Student’s t-test)50–53.

To investigate which of the different measures of hearing and speech-in-noise listening informed on the sub-
ject’s ability to understand speech in noise, we employed multiple linear regression (ordinary least squares) to pre-
dict the SRTn from the other variables, that is, from noise exposure, the ITD threshold, the latency shift of wave 
V of the auditory brainstem response to clicks in noise, the MEMR, and the relative attentional modulation of the 
brainstem response to the male and the female voice. The data were checked for the conditions that allow linear 
regression, and all the variables were entered into the model without any selection criteria. In particular, we did 
not find not find evidence of multicollinearity (all variance inflation factors were below 1.8) or autocorrelation. 
The model also met homoscedasticity requirement. We corrected for multiple comparisons by controlling the 
false discovery rate (FDR) at 10%54. The only significant factor that remained was the relative attentional modula-
tion of the brainstem response to the male speaker, AM (Table 1, r2 = 0.38, standardised coefficient for AM: 0.461, 
raw p-value for AM: 0.011, FDR-adjusted threshold: 0.017). On the other hand, neither noise exposure nor any of 
the measures of cochlear synaptopathy were significantly related to speech-in-noise perception.

We further analyzed the pairwise Pearson correlation coefficients between the different measures that we 
assessed, that is, between the SRTn, the noise exposure, the ITD threshold, the latency shift of wave V of the audi-
tory brainstem response to clicks in noise, the MEMR, and the attentional modulation of the brainstem response 
(Fig. 4a). After correcting for multiple comparisons through adjusting for the false discovery rate (FDR) at 10%, 
we only observed a significant correlation between the SRTn and the attentional modulation of the brainstem 
response to the male voice (Fig. 4b, r = 0.47, raw p-value = 0.0037, FDR-adjusted threshold: 0.0048).

Figure 3. The auditory brainstem response to the male voice is larger when it is attended (dark blue) than when 
it is ignored (light blue). We observe a similar difference between the brainstem response to the female voice 
when attended (dark red) and then ignored (light red). Moreover, the brainstem response to the male voice, 
when attended, is significantly larger than the response to the female voice when attended.
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Discussion
Although our volunteers were all young and had normal hearing thresholds, they exhibited variability of life-time 
noise exposure and of speech-in-noise perception. In particular, the variability in both measures were comparable 
to those reported in recent studies on young adults37,55–58. We showed that a significant portion of the variability 
in speech-in-noise comprehension could be explained by the individual’s attentional modulation of the brainstem 
response to speech. In particular, volunteers that exhibited worse speech-in-noise comprehension showed a larger 
attentional modulation of the brainstem response to the male voice.

Although the correlation between the SRTn and the attentional modulation of the brainstem response to the 
male speaker was statistically significant even after correcting for multiple comparisons, the raw p-value of 0.0037 
was only marginally below the corresponding FDR-adjusted significance threshold. The result should therefore 
be interpreted with caution. However, the large number of potential confounding factors that we have included 
in our exploratory study has set a high bar for statistical significance, which gives us confidence that the reported 
relation is indeed significant.

Because the attentional modulation of the brainstem response must involve the corticofugal pathways from 
the cortex to the brainstem, our finding may indicate that subjects who found it harder to understand speech in 
noise relied more on this neural feedback mechanism, perhaps to compensate for more central processing deficits. 
The increased attentional modulation of the brainstem response in subjects who exhibited poorer speech-in-noise 
comprehension might also have reflected compensation mechanisms at a subcortical level, such as in the inferior 
colliculus59–61.

We note that the larger attentional modulation of the brainstem response in subjects with lower 
speech-in-noise comprehension parallels previous findings of a negative correlation between the strength of the 

Unstandardised 
coefficients (B)

Standardised 
coefficients (Beta) p value

95% Confidence Interval for B

Lower Bound Upper Bound

Constant offset −0.073 0.95 −2.48 2.3

Noise exposure −0.047 −0.28 0.19 −0.12 0.025

ITD threshold −0.0053 −0.0018 1.0 −1.30 1.3

ABR latency shift −55 −0.34 0.10 −121 12

MEMR threshold 0.018 0.20 0.35 −0.020 0.056

Att. mod. male voice (AM) 0.91 0.46 0.011 0.22 1.6

Att. mod. female voice (AF) −0.028 −0.0082 0.96 −1.2 1.2

Table 1. We used multiple linear regression to determine which of the auditory measures could explain the 
variability in speech-in-noise perception. After correcting for multiple comparisons (FDR, q = 0.1) we obtained 
only the relative attentional modulation of the brainstem response to the male voice, AM, as a significant 
predictor; this could explain 38% of the variance in the SRTn.

Figure 4. Relation between speech-in-noise perception and the attentional modulation of the brainstem 
response. (a) The only significant pairwise correlation, after correcting for multiple comparisons (FDR; 
q = 0.1), arises between the SRTn and the attentional modulation of the brainstem response to the male voice, 
AM. There is no significant correlation between the SRTn and noise exposure, or between any of the other 
auditory measures. (b) The attentional modulation AM can explain 22% of the variation in the speech-in-noise 
comprehension. The p-value (0.0037) remains significant after correcting for multiple comparisons.
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MOCR and speech-in-noise ability25,26. However, the MOCR reflects a broadband reduction of cochlear ampli-
fication, whereas the brainstem response that we have studied here is narrowband and may emerge only in the 
brainstem without involving a change in cochlear amplification. Interestingly, computational work suggests that 
frequency-specific attentional modulation can improve the comprehension of speech in noise significantly more 
than broadband modulation61,62 which may explain why research on the relation of the MOCR to speech-in-noise 
comprehension has yielded conflicting results.

The relation between speech-in-noise comprehension and the attentional modulation of the speech-ABR 
emerged only for the brainstem response to the male, but not the female, voice. The absence of a significant rela-
tion between the SRTn and the attentional modulation of the brainstem response to the female speaker may have 
resulted from a smaller brainstem response to the female than to the male voice. Indeed, we have shown that the 
smaller brainstem response to the female speaker was linked to less variation in the attentional modulation of 
the response when compared with the response to the male voice. The smaller brainstem response to the female 
speaker presumably resulted from the, on average, higher fundamental frequency of the female voice compared 
to the male one. Higher frequencies, either of a pure tone, in speech tokens or in a musical note, are indeed known 
to cause a smaller brainstem response, presumably caused by less phase locking in neurons in response to higher 
frequencies50–52,63.

The brainstem response to speech that we measured here emerged at a mean latency of 8.3 ± 0.3 ms. This 
accords with the latency of the frequency-following response to a pure tone as well as with previously reported 
latencies of the brainstem response to short speech tokens, and evidences a subcortical origin50,64. Although 
recent MEG and EEG investigations have found that the frequency-following response (FFR) as well as neural 
responses to the temporal fine structure of speech can also have cortical contributions, we have not observed an 
additional peak in the brainstem response at a longer latency65,66. Such a cortical contribution may nonetheless 
be present but not measurable in our experiments due to a dominant contribution from the brainstem and due to 
the relatively broad autocorrelation of the fundamental waveform that limits the temporal resolution and thereby 
the identification of different components of the neural response30. However, the cortical contributions to the 
FFR are assumed to degrade above 100 Hz and to be absent above 200 Hz67,68. The comparable time courses of the 
brainstem responses to the male speaker, with a fundamental frequency of 123 ± 30 Hz, and of the response to 
the female speaker, with a significantly higher fundamental frequency of 175 ± 39 Hz, therefore corroborates the 
absence of a measurable cortical contribution in our recordings.

Although we employed a variety of measures that have recently been proposed for cochlear synaptopathy, 
no association survived the multiple comparison correction. We therefore found no evidence of this neurop-
athy amongst our subjects. In particular, we did not find a significant relationship between noise exposure and 
speech-in-noise perception. Because cochlear synaptopathy has been suggested to lead to a worsened ability to 
hear in noisy environments, this results suggest the absence of cochlear synaptopathy amongst our volunteers69,70. 
In addition, two objective measures that have recently been suggested to inform on cochlear synaptopathy — the 
latency change of ABR wave V when listening to clicks in different noise levels as well as the MEMR — did not 
correlate with noise exposure either. Moreover, we did not find a significant pairwise correlation between any 
of these behavioural and objective measures. This accords with recent large-cohort studies that have not found 
a correlation of proposed measures of cochlear synaptopathy to the lifetime noise exposure of the participants 
or their speech-in-noise perception37,71,72. This may suggest that either cochlear synaptopathy has little influence 
on auditory difficulty or that it has no significant prevalence, at least in normal-hearing people. However, in this 
study we did not test for high-frequency hearing loss above 8 kHz, which may serve an early indicator of hearing 
loss at lower frequencies and may indicate cochlear synaptopathy in a broader frequency range73,74. Moreover, the 
measures that we have employed may not have been optimal for detecting cochlear synaptopathy: the latency shift 
of wave V in noise, for instance, has been recently shown to have only moderate test-retest reliability55.

Although we did not find a peripheral origin of the observed variability in speech-in-noise comprehen-
sion and in the brainstem measure, to the extent to which our methods capture peripheral processing, future 
studies are required to tease apart the contributions of bottom-up and top-down impairments to the observed 
relation between speech-in-noise comprehension and the attentional modulation of the brainstem response to 
speech. Moreover, our results have been obtained in young adults, and further work is needed to investigate 
how the attentional modulation of the brainstem response to speech changes with age and how it correlates to 
speech-in-noise understanding in older listeners.
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