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Abstract

■ Speech and music are spectrotemporally complex acoustic
signals that are highly relevant for humans. Both contain a tem-
poral fine structure that is encoded in the neural responses of
subcortical and cortical processing centers. The subcortical
response to the temporal fine structure of speech has recently
been shown to be modulated by selective attention to one of
two competing voices. Music similarly often consists of several
simultaneous melodic lines, and a listener can selectively attend
to a particular one at a time. However, the neural mechanisms
that enable such selective attention remain largely enigmatic,
not least since most investigations to date have focused on
short and simplified musical stimuli. Here, we studied the neu-
ral encoding of classical musical pieces in human volunteers,
using scalp EEG recordings. We presented volunteers with con-
tinuous musical pieces composed of one or two instruments. In
the latter case, the participants were asked to selectively attend
to one of the two competing instruments and to perform a

vibrato identification task. We used linear encoding and decod-
ing models to relate the recorded EEG activity to the stimulus
waveform. We show that we can measure neural responses to
the temporal fine structure of melodic lines played by one sin-
gle instrument, at the population level as well as for most indi-
vidual participants. The neural response peaks at a latency of
7.6 msec and is not measurable past 15 msec. When analyzing
the neural responses to the temporal fine structure elicited by
competing instruments, we found no evidence of attentional
modulation. We observed, however, that low-frequency neural
activity exhibited a modulation consistent with the behavioral
task at latencies from 100 to 160 msec, in a similar manner to
the attentional modulation observed in continuous speech
(N100). Our results show that, much like speech, the temporal
fine structure of music is tracked by neural activity. In contrast
to speech, however, this response appears unaffected by selec-
tive attention in the context of our experiment. ■

INTRODUCTION

Music is a fascinatingly complex acoustic stimulus. Lis-
teners can follow the multiple melodic lines played by dif-
ferent instruments composing an orchestra or listening to
the ensemble as a whole. This demonstrates one of the
fundamental properties of the auditory system—its ability
to segregate concurrent and sequential sounds and group
them into perceptual streams (Bregman, 1994). The for-
mation of these percepts is influenced by the physical
characteristics of the incoming sounds, including notably
pitch, location, onset synchrony, and presentation rate
(Moore & Gockel, 2012; Cross, Hallam, & Thaut, 2008),
but also by the listener’s exposure to the stimulus regular-
ities and learnt patterns (Winkler, Takegata, & Sussman,
2005; Winkler, Teder-Sälejärvi, Horváth, Näätänen, &
Sussman, 2003). These intricate characteristics are
thought to rely on a distributed network from the periph-
ery to the auditory cortex (Kashino & Kondo, 2012), with
invasive animal studies suggesting that neurons as early as
the cochlear nucleus exhibit response curves consistent

with human behavioral (Pressnitzer, Sayles, Micheyl, &
Winter, 2008; Pressnitzer, Meddis, Delahaye, & Winter,
2001). However, the relative contributions of the different
auditory structures to the formation of auditory percepts,
as well as where in the auditory pathways these emerge,
remain unclear. This is partly due to the difficulties that
arise when comparing human psychophysics studies with
invasive animal neural recordings. Human noninvasive
neuroimaging studies provide a valuable tool to bridge
that gap. However, many of these studies have focused
on well-controlled but simplified patterns that do not
encompass the much richer structure of real-world
acoustic signals. Combining complex continuous stimuli,
neuroimaging, and statistical models may further our
understanding of the neural mechanisms underlying audi-
tory scene analysis, in particular when higher cognitive
constructs, such as selective attention, are involved.

Recent studies have indeed shown how these methods
can relate key features of speech to electrophysiological
recordings and inform on the neural mechanisms of
speech processing (Wöstmann, Fiedler, & Obleser,
2017; Di Liberto, O’Sullivan, & Lalor, 2015; Ding & Simon,
2012a, 2014). For example, cortical activity has been found
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to track slow (<8 Hz) amplitude fluctuations in speech
(Ding & Simon, 2012b; Pasley et al., 2012; Lalor & Foxe,
2010; Nourski et al., 2009). This envelope tracking
emerged in the primary auditory cortex and was found
to be modulated by selective attention in competing
speakers and speech-in-noise experiments, thereby dem-
onstrating a neural correlate of independent source rep-
resentation in the cortex (O’Sullivan et al., 2015; Ding &
Simon, 2012a). In a similar manner, subcortical as well as,
presumably to a lesser degree, cortical responses were
shown to emerge to the higher-frequency (>80 Hz)
stimulus structure (Etard, Kegler, Braiman, Forte, &
Reichenbach, 2019; Bidelman, 2018; Maddox & Lee, 2018;
Forte, Etard, & Reichenbach, 2017; Coffey, Herholz,
Chepesiuk, Baillet,&Zatorre, 2016).Moreover, a recent study
showed that subcortical neural responses to the pitch of con-
tinuous speech are stronger when the stimulus is attended
rather than ignored (Forte et al., 2017). This result suggests
that the pitch of a speaker could be used by the brain to per-
ceptually segregate the speech signal from background
noise, a finding that agrees with previous psychophysical
studies that have found it easier to differentiate two
concurrent speech signals if their fundamental frequencies
differ (Madsen, Whiteford, & Oxenham, 2017; de
Cheveigné, Kawahara, Tsuzaki, & Aikawa, 1997).

Understanding how the brain can focus on a single
instrument among others relates to speech through a
major challenge in auditory neuroscience, the cocktail
party problem. This problem acquired its name from the
observation that humans do remarkably well at under-
standing a target speaker in a noisy environment, such
as in a busy restaurant or in a loud bar (Haykin & Chen,
2005; Cherry, 1953). The temporal fine structure of speech
originates from the periodic opening and closing of the
vocal folds at the so-called fundamental frequency. The
spectrum of these voiced speech parts is therefore domi-
nated by the fundamental frequency as well as its many
higher harmonics, leading to a pitch perception in the lis-
teners. Musical tones are similarly characterized by a fun-
damental frequency and higher harmonics, resulting in a
characteristic temporal structure that causes a pitch per-
ception. The proximity of fundamental frequencies of
subsequent tones has been found to aid the formation
of an auditory stream (Oxenham, 2008; Bregman, Liao,
& Levitan, 1990). Consequently, just as the neural tracking
of temporal fine structure could help listeners attend to a
voice in background noise, such a neural mechanism may
aid with attending to a particular melodic line (Micheyl &
Oxenham, 2010).

Here, we investigated this hypothesis by using linear
models to assess neural responses to the temporal fine
structure of continuous melodic lines. To establish that
we couldmeasure neural responses to continuousmusical
pieces, we first presented volunteers with continuous clas-
sical Bach pieces consisting of melodic line played by one
instrument while recording their brain activity through a
bipolar EEG montage. We related the neural activity to

the stimulus waveforms using encoding and decoding
methods. To then assess a putative effect of selective
attention on these neural responses, we also presented
the volunteers with continuous pieces consisting of two
different melodic lines played by competing instruments,
a guitar and a piano. Participants were asked to selectively
attend to one of the two lines, and we contrasted the neu-
ral responses to each instrument when it was attended to
when it was ignored.
Because of multiple nonlinearities in the auditory

periphery, both the temporal fine structure and the enve-
lope of the stimuli are represented in neural responses.
This encoding has traditionally been investigated in
humans by studying time-locked responses to transient
or periodic features of repeated short sound tokens such
as clicks, pure or complex tones, syllables, and words
(Skoe & Kraus, 2010). These paradigms typically present
a particular stimulus as well as its opposite waveformmany
times. The neural responses to each polarity are then
summed to emphasize responses to the envelope or sub-
tracted to emphasize response to the temporal fine struc-
ture (Krizman & Kraus, 2019; Aiken & Picton, 2008). Here,
we used continuous, long stimuli to derive auditory neu-
ral responses to their temporal fine structure using linear
convolutive models.

METHODS

Experimental Design and Statistical Analysis

Seven of Bach’s “Two-Part Inventions” (BWV 772-801)
were used in this study. Each Two-Part Invention is a short
keyboard composition that consists of two melodic lines:
one played by the left hand, and the other played by the
right. We synthesized the stimuli in GarageBand (Apple)
from Musical Instrument Digital Interface (MIDI) files,
with the left hand being played by a piano and the right
hand being played by a guitar. To assess the attention of
participants to a particular melodic line, vibratos were
inserted in both lines.
Volunteers were presented with two types of stimuli.

The first type, “Single Instrument” (SI), consisted of one
single instrument, piano or guitar, that played one
melodic line. The second type, “Competing Instruments”
(CI), contained both melodic lines of a Two-Part Inven-
tion, one played by the piano and the other played by
the guitar.
The different stimuli were presented in blocks (Figure 1).

Each block contained one SI stimulus and one subse-
quent CI stimulus, both of which were obtained from
the same Two-Part Invention. During the CI stimulus,
the volunteers were asked to selectively listen to the
instrument that they heard before in the SI stimulus. They
were also asked to identify the vibratos embedded into
that melodic line.
Blocks with the SI stimulus played by the piano alter-

nated with those played by the guitar. Each of the seven
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Two-Part inventions was presented twice: once with the SI
stimulus played by the guitar and once with the SI stimulus
played by the piano. Each participant therefore heard
seven SI stimuli played by the guitar, seven SI stimuli
played by the piano, and 14 CI stimuli.
All participants were initially presented with the same

two training blocks, one with an SI stimulus played by
the guitar and one played by the piano, that corresponded
to the same invention. These stimuli presentations served
to familiarize the participants with the task of attending to
one melodic line in the CI stimulus and to identify the
embedded vibratos. These training blocks were excluded
from further analysis, leaving six inventions in each
condition.
The presentation order of the remaining blocks was

pseudorandomized across participants. In the second pre-
sentation of a given CI stimulus, a participant was asked to
attend to the instrument they ignored in the first presen-
tation. Two consecutive blocks did not correspond to the
same invention. Each participant therefore heard each CI
stimulus twice but attended a different instrument in each
presentation. Whether a participant was initially asked to
attend to the guitar or the piano was randomly decided.
The participant’s neural responses were measured
through scalp EEG with a two-channel bipolar montage
(head vertex minus mastoids).
We used encoding and decoding approaches (linear for-

ward and backward models) to relate the acoustic stimuli
to the recorded neural data. We specifically investigated
the neural representation of the temporal fine structure
by using the stimulus waveform as a feature. We first estab-
lished that we could indeed record a significant neural
response to this feature by comparing the neural
responses to a null distribution at the level of individual
participants as well as on the population level. We then

studied the time course of the response in the region
between 0 and 45 msec, using both forward and backward
models. Finally, we investigated a putative attentional
modulation of this neural response through contrasting
the encoding of each instrument in the neural data when
attended versus ignored. We used conservative filters to
reduce distortions to the neural responses and their laten-
cies but verified that our results and, in particular, the ones
related to attention did not change with stronger filtering
(data not shown).

Code and Data Availability

The analysis presented in this article was implemented
using MATLAB (R2019b, The MathWorks, Inc.) with the
EEGLAB toolbox (Delorme & Makeig, 2004). The linear
forward and backward models were trained using
the LMpackage (github.com/octaveEtard/LMpackage).
The raw data as well as analysis code and processed
data required to reproduce the results presented here have
been made available (https://github.com/octaveEtard
/EEGmusic2020; https://zenodo.org/record/4470135).

Participants

Seventeen volunteers (aged 23.8 ± 2.9 years, nine
women) participated in this experiment. The number of
participants was chosen based on previous studies inves-
tigating similar neural responses to continuous speech
(Etard et al., 2019; Forte et al., 2017). All participants were
right-handed, had no history of auditory or neurological
impairments, and provided written informed consent.
The experimental procedures were approved by the Impe-
rial College Research Ethics Committee.

Figure 1. Schematic representation of the experiment. Volunteers were presented with continuous classical music pieces, Bach’s Two-Part
Inventions, that consisted of either a single melodic line (SI) or of two melodic lines (CI). Each melodic line was played either by a guitar or by a
piano. In the CI stimuli, each melodic line was played by a different instrument. The average duration of each invention was 1.6 min; only a short
segment of each invention is displayed here for clarity. Vibratos were inserted into the acoustic waveforms of each melody (gray shading). In the CI
condition, the participants had to attend to one of the two instruments and identify the corresponding vibratos (green tick marks) while ignoring the
other instrument and its vibratos (red crosses). The stimuli were presented in blocks composed of an SI stimulus followed by a CI stimulus during
which the participant was asked to attend to the instrument that they heard before in the SI stimulus. The attended instrument was alternated
between blocks, and each block was played twice such that the attended instrument differed in the two presentations. The volunteers’ neural
responses were recorded throughout the experiment through bipolar two-channel EEG recordings.
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Music Stimuli

To generate neural responses to each instrument that
were of similar magnitude, the notes of the guitar were
lowered by one octave so that their fundamental frequen-
cies fell below 500 Hz. They remained nonetheless some-
what higher than those of the piano notes (Figure 2A, B).
Themusic stimuli were synthesized fromMIDI files to gen-
erate wav files. These were then processed using MATLAB
to apply vibratos to 10 segments in eachmelodic line. Each
vibrato was constructed by introducing a sinusoidal warp
at a modulation frequency of fm = 8 Hz on the waveform
of a single note. The onset and offset times of the notes
were obtained from the MIDI files using the Miditoolbox
for MATLAB (Eerola & Toiviainen, 2004). The notes were
selected such that the onsets of any two vibratos in a given
piece, whether both played by the same or different instru-
ments, were separated by at least 1 sec. In the six inven-
tions used in the competing condition, there were thus
60 vibratos for each instrument in total. Overall, there
were six piano vibratos during a silence on the guitar track
and four guitar vibratos during a silence on the piano track.
All other vibratos happened while a note was being played
by the other instrument.

The waveforms of the CI stimuli, wmixed, were con-
structed by normalizing and mixing the waveform wg of
the guitar and the waveform wp of the piano according
to their root-mean-square values (RMS): wmixed =

wg

RMS wgð Þ + 1.25 × wp

RMS wpð Þ. The mixing parameter of 1.25

for the piano was chosen following a preliminary pilot
study used to ascertain the feasibility of the task and tune
its difficulty, and that was conducted before the main
investigation. In this independent test, the participants
reported that the piano sounded weaker when the inten-
sities of the two instruments were balanced. The mixing
factor was progressively changed until they reported that
the two instruments sounded equally loud and that it was
as challenging to attend to either instrument. Their perfor-
mance on the vibrato identification task also reflected the
approximately similar difficulty in attending to either
instrument.
The duration of the seven Two-Part Inventions was,

taken together, 11.2min. In the SI conditions, only the first
half of the corresponding invention was played.

Behavioral Task

In the CI condition, the participants were instructed to
attentively listen to one instrument while ignoring the
other. They were also asked to classify the vibratos they
heard by pressing a key to indicate the ones that belonged
to the attended instrument. A key press within 2 sec after
the onset of a vibrato in the attended or ignored instru-
ment was classified respectively as “true positive” or “false
positive.” Key presses outside these ranges were classified
as “unprompted” and were not analyzed further. On aver-
age, 0.5 ± 0.9 vibratos were classified as “umprompted”
per stimulus and not analyzed further (average ± standard
deviation over participants and stimuli). These include
responses outside the time window mentioned above, as
well as repeated key presses beyond the first one within a
response window. Because of a technical error, behavioral
data were not recorded for one participant, and only the
results for the 16 remaining participants were analyzed.
The sensitivity index d0 was computed for each participant
when attending to the guitar and the piano, and it was
compared between the two conditions at the population
level using a two-tailed paired Wilcoxon signed-rank test.
Moreover, for each condition, the true positive rate (TPR)
was compared with the false positive rate (FPR), and the
TPR and FPR were compared between conditions at the
population level using two-tailed paired Wilcoxon
signed-rank tests with false discovery rate (FDR) correc-
tion for multiple comparisons (four tests).

Neural Data Acquisition and Stimulus Presentation

Scalp EEGwas recorded through five passive Ag/AgCl elec-
trodes (Multitrode, BrainProducts). Two electrodes were
positioned close together near the cranial vertex (Cz),
and two electrodes were placed on the left and right mas-
toid processes. A ground electrode was placed on the fore-
head. The impedance between each electrode and the
skin was reduced below 5 kΩ using abrasive electrolyte

Figure 2. Properties of the acoustic stimuli and of the filtered EEG
data. (A) The probability mass function of the fundamental frequency
of the notes peaked at around 196 Hz for the piano (red) and at about
294 Hz for the guitar (black). Most fundamental frequencies lied
between 100 and 400 Hz, with the distribution of the guitar notes being
shifted to somewhat higher frequencies. (B) To eliminate frequencies
below the range of the fundamental frequencies, the EEG data were
high-pass filtered above 130 Hz. The filtered EEG data consequently
displayed some periodicity and correlation in time as evident from its
autocorrelation function.

414 Journal of Cognitive Neuroscience Volume 34, Number 3



gel (Abralyt HiCl, Easycap). One vertex electrode was
paired with the left mastoid electrode, and they were con-
nected to, respectively, the noninverting and inverting
ports of a bipolar amplifier (EP-PreAmp, BrainProducts).
The remaining vertex and mastoid electrodes were simi-
larly connected to a second identical amplifier. The output
of each bipolar preamplifier was fed into an amplifier (acti-
CHamp, BrainProducts) and digitized with a sampling fre-
quency of 5 kHz, thus yielding two electrophysiological
data channels. The audio stimuli were simultaneously
recorded at 5 kHz by the amplifier through an acoustic
adapter (Acoustical Stimulator Adapter and StimTrak,
BrainProducts). This channel and independent analogue
triggers delivered through an LPT port were used to
temporally align the EEG data and stimuli through cross-
correlation. The stimuli were delivered diotically at
a comfortable loudness level through insert tube earphones
(ER-3C, Etymotic) to minimize stimulation artifacts. These
earphones introduced a 1-msec delay that was compensated
for by shifting the neural data forward in time by 1 msec.

EEG Data Filtering

To analyze the neural responses to the temporal fine struc-
ture of the stimuli, the EEG data were high-pass filtered
above 130 Hz (windowed-sinc filters, Kaiser window, one
pass forward and compensated for delay; cutoff = 115 Hz,
transition bandwidth = 30 Hz, order = 536). These filters
rejected lower-frequency neural activity but reduced the
temporal precision of the data, as evidenced by the auto-
correlation function of the filtered EEG data (Figure 2C).
Notably, they were noncausal filters that spread responses
in both temporal directions.
The EEG data were also analyzed regarding cortical

responses. To this end, it was band-pass filtered between
1 and 20 Hz and resampled to 100 Hz (windowed-sinc
filters, Kaiser window, one pass forward and compensated
for delay; low-pass filter: cutoff = 35 Hz, transition band-
width = 30 Hz, order = 536; high-pass filter: cutoff =
0.5 Hz, transition bandwidth = 1 Hz, order = 322).

Stimulus Representations

The vibratos might lead to neural responses deviating
from the ones elicited by the rest of the tracks. The corre-
sponding parts of the stimulus waveforms were thus
replaced with zeros to create the stimulus representations
(features) used in the encoding and decoding models.
These waveforms were then low-pass filtered and
resampled from 44.1 to 5 kHz, the sampling frequency
of the corresponding EEG data, using a linear phase finite
impulse response antialiasing filter (windowed-sinc filter,
Kaiser window, one pass forward and compensated for
delay; cutoff = 2250 Hz, transition bandwidth = 500 Hz,
order = 14,126).
To derive cortical responses to the stimuli, features

encoding the note onsets were created as well. These

were formed by time series with a constant value of equal
to 0, except at note onsets, which were marked by an
impulse with a value of 1. These were created based on
the timing of the note onset as extracted from the MIDI
files, at a sampling frequency matching the EEG data for
cortical analysis (100 Hz).

Encoding Models

We used regularized linear forward models to derive the
neural response to the stimulus waveform. In these convo-
lutive encoding models, the measured EEG response e is
modeled as e(t) = (r * s)(t) = n(t), where s is the stimulus
waveform, r is the neural response or temporal response
function (TRF), n is noise, and * is the convolution sym-
bol. In practice, assuming a nonzero response in a time
interval (τmin, τmax) only and with discrete data, the EEG
activity ei(tn) at channel i 2 {1, 2} and at time tn can be
estimated as êi(tn) =

PN
k¼1 r(τk) × s(tn − τk), with τ1 =

τmin and τN = τmax. Given the bipolar montage we used,
as well as the diotic stimulus presentation, we did not
expect any difference between the two EEG channels
and assumed the same neural response for both.

The model was estimated for time lags spanning τmin =
−100 msec to τmax = 45 msec. A population-averaged
TRF r was fitted using ridge regression coupled with a
leave-one-participant-out and leave-one-data-part out
cross-validation (Crosse, Di Liberto, Bednar, & Lalor,
2016; Hastie, Tibshirani, & Friedman, 2009; Lalor, Power,
Reilly, & Foxe, 2009). In details, the neural responses for
one participant during one stimulus part were chosen as
testing data. The model coefficients were derived using
the neural data from all the other participants, in response
to all the other stimulus parts. The model was evaluated
on the testing data that were hence not seen by the model
during training. This constituted one cross-validation fold.
The left-out participant and the left-out data part were
then iterated until all combinations were exhausted, for
a total of 17 × 6 = 102 folds. The validation performance
of the model was quantified by dividing the predicted
neural response êi and the measured EEG activity ei from
the testing data in each fold into 10-sec long segments
and by computing Pearson’s correlation coefficients
between each segment. The correlation coefficients thus
obtained were then averaged over all cross-validation
folds as well as over all EEG channels.

The performance was assessed for models correspond-
ing to 25 normalized regularization coefficients λn that
were distributed uniformly on a logarithmic scale
between 10−6 and 106. The regularization coefficient
was thereby λ = λn × m, with m as the mean eigenvalue
of the predictor’s autocorrelation matrix (Biesmans,
Das, Francart, & Bertrand, 2017). Regularization is used
in the EEG literature in conjunction with linear convolu-
tive models to penalize large, oscillating coefficients and
prevent overfitting, thus increasing the models’ generaliz-
ability and predictive performances (Wong et al., 2018;
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Biesmans et al., 2017). The model yielding the highest
reconstruction performance was chosen as representing
the neural response. To assess the significance of the
obtained TRFs, the negative, noncausal part of the
response, −100 to 0 msec, was used to construct a null
distribution. For each instrument, a Gaussian distribution
was fitted to the pooled data points from the negative part
of the response. From the distribution, we determined
the p values of all the points in the positive part of the
response (0–45 msec) and applied an FDR correction for
multiple comparison over time points and instruments.

To ascertain the relative contributions of the onset and
of the sustained parts of the notes to the neural response,
we created a new representation of the stimuli in which
the note onsets were suppressed. This was achieved by
multiplying the original stimulus waveforms by a 60-msec
window w centered on each note onsets, with w(t) = 1−
h(t) and h representing a 60-msec Hann window. Forward
models were then derived for the original stimuli, and
their onset-suppressed versions for the two SI conditions
were taken together by pooling the data from both instru-
ments. These two models were fitted, and their signifi-
cance was ascertained as described above, that is, by
comparing the causal part to the null models, with FDR
correction for multiple comparisons over time points and
over the two models. In the cross-validation procedure,
two data parts, one from each SI condition and corre-
sponding to the same invention, were left out at each stage.

Decoding Models

We also used backwardmodels to reconstruct the stimulus
waveform s as a linear combination of the neural activity ei
on each channel i at different time lags: ŝ(tn) =

P2
i¼1

PN
k¼1

βi(τk) × ei(tn+ τk), with τmin ≤ τk ≤ τmax. The coefficients
β were trained for each participant independently, using
ridge regression with a leave-one-part-out cross-validation
and a normalized regularization coefficient λn = 10−0.5

(Biesmans et al., 2017). As with the forward models, the
performances of the backward models were measured
through computing the correlation coefficients between
the reconstructed stimulus and the actual one on 10-sec
long segments of the testing data. The set of correlation
coefficients pooled from all cross-validation folds for a
given participant was used when performing statistical
testing at the level of individual participants, and the cor-
responding average correlation coefficient was used for
each participant when testing at the population level.
The performances of the models were thereafter used to
quantify the neural encoding of each stimulus for a given
reconstruction time window τmin − τmax.

Significance of the Stimulus Reconstruction

The neural encoding of the SI stimuli for each instrument
was measured through the backward models using

reconstruction time windows of equal duration but cen-
tered on different delays. To establish the significance of
the stimulus reconstruction procedure at the level of indi-
vidual participants, a window of delays between τmin =
−15 msec and τmax = 0 msec was used to provide a null
distribution for each participant. The neural encoding
in the window of interest, from τmin = 0 msec to τmax =
15 msec, was compared with the null distribution for each
participant using one-tailed paired Wilcoxon signed-rank
tests with FDR correction for multiple comparisons over
participants and instruments. Significance was also
derived at the population level using the mean correlation
coefficients for each participant from the null window of
negative delays to create a null population-level distribu-
tion. To test the time windows in which a significant
response could be detected, the mean reconstruction
accuracies from three windows of interest (0–15, 15–30,
and 30–45 msec) were compared with this null distribu-
tion using one-tailed paired Wilcoxon signed-rank tests
with FDR correction for multiple comparisons over win-
dows and instruments.
Because the guitar and piano waveforms formed pairs

derived from the same inventions and although their
frequency contents were different, one may wonder
whether one instrument could be predicted from the
other and, in turn, whether the neural responses to one
instrument could be predicted or used to decode the
other one. To address this question, we trained linear
backward models that sought to reconstruct the wave-
form of one instrument from the neural data that were
recorded when the other instrument from the same
invention was played in the SI conditions (0–15 msec
reconstruction window). The model performance was
then compared with the null distribution previously
described (obtained from a−15 to 0 msec reconstruction
window) at the population level, using one-tailed paired
Wilcoxon signed-rank tests.

Competing Conditions, Attended and
Ignored Instruments

In the CI conditions, we trained backward models to
reconstruct the waveform of either the attended or the
ignored instrument independently, using a window of
temporal delays from τmin = 0 msec to τmax = 15 msec
as detailed above. We then compared the neural encoding
of each instrument, when attended and when ignored, at
the population level using two-tailed paired Wilcoxon
signed-rank tests with FDR correction for multiple com-
parisons over instruments. Furthermore, to ascertain the
significance of the reconstructions, noise models were
similarly trained for both instrument and attention condi-
tion using a time window from τmin =−15 msec to τmax =
0 msec. The performance of the meaningful models was
then compared with these null distributions at the popu-
lation level, using one-tailed paired Wilcoxon signed-rank
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tests with FDR correction for multiple comparisons over
instruments and attention conditions.
We also used forward models reconstructing the neu-

ral activity as the sum of two neural responses, one to
the attended instrument and one to the ignored one.
In this instance, the EEG response e is modeled as
e(t) = (rA * sA)(t) + (rI * sI)(t) + n(t), where sA and sI
are the attended and ignored stimulus waveforms and rA
and rI are the corresponding TRFs. In a similar manner
to the procedures previously described, population-
averaged TRFs were fitted using ridge regression
coupled with a leave-one-participant-out and leave-one-
data-part out cross-validation for time lags spanning
τmin = −100 msec to τmax = 45 msec on the pooled
data from the two CI conditions. To assess the presence
of a putative attentional modulation in the obtained
TRFs, the distribution of amplitude across participants
was compared between the attended and ignored TRFs
for each time point in the 0–15 msec ROI (two-tailed
paired Wilcoxon signed-rank tests with significance
threshold p ≤ .01 after FDR correction for multiple com-
parisons over time points).
To investigate a putative attentional modulation in cor-

tical responses, the same procedure was repeated using
the EEG data, band-pass filtered between 1 and 20 Hz
and the stimulus feature marking the note onset with
an impulse. In this case, the models were fitted with time
lags between τmin = −250 msec to τmax = 750 msec. Pre-
vious continuous speech studies revealed attentional
modulation of the neural responses at latencies around
100 msec (N100; Ding & Simon, 2012a). An ROI from
50 to 200 msec was thus defined, and the distribution
of amplitude across participants was compared between
the attended and ignored TRFs for each time point in
this ROI (two-tailed paired Wilcoxon signed-rank tests
with tests with significance threshold p ≤ .01 after FDR
correction for multiple comparisons over time points).

RESULTS

We asked volunteers to attend to continuous musical
pieces consisting of either one single instrument (SI) or
of two competing instruments (CI) while we recorded
their neural activity using EEG (Figure 1). We first sought
to analyze the neural response to the temporal fine struc-
ture of a single melodic line. To this end, we computed a
linear forward model to derive neural responses to the
stimulus waveform at the population level in the SI condi-
tions (Figure 3A). The TRFs that we obtained for the two
instruments were qualitatively similar to each other. They
displayed a major significant response at a latency of
7.6 msec, as well as a minor positive peak at 2.2 msec, with
side lobes reminiscent of the EEG autocorrelation func-
tion (Figure 2C).

The neural response to temporal fine structure may be
related to the well-established frequency-following
response (FFR). Because the latter is known to first exhibit
a response to a stimulus onset and to then follow the sus-
tained features, we explored the relative contributions of
the note onsets and their sustained oscillations to the neural
response. We therefore trained a forward model with stim-
ulus waveforms in which the note onsets were suppressed
(Figure 3B). The obtained TRFs had similar significant
regions and resembled the TRFs to the original stimulus
waveforms. Moreover, the causal parts of the two TRFs,
those with positive delays, were highly correlated (r= .96).

As an alternative method to the forward models, we
then also used decoding models that reconstructed the
stimulus waveforms based on the EEG data. We computed
these models for each participant in the SI condition. To
ascertain the statistical significance of the reconstructions,
we used a window from −15 to 0 msec to provide a null
distribution of performance. Compared with this chance
level, we found that a significant reconstruction accu-
racy could be obtained for most participants when using

Figure 3. TRFs. (A) We obtained TRFs on the population level from forward models that predicted the neural responses from the stimulus temporal
fine structure in the SI conditions for the guitar (black) and for the piano (red). Shaded regions denote ±1 standard deviation across participants
around the mean TRFs. Significant regions (thick lines) emerged at similar latencies for the guitar and the piano, with a first peak at 2.2 msec,
followed by a main positive peak at 7.6 msec. (B) We also computed TRFs for both instruments taken together from stimulus waveforms in which the
note onsets where removed (“Note onsets removed,” red). The obtained TRFs exhibited nonetheless the same significant peaks as the TRFs from
the original temporal fine structure feature (“With note onsets,” black), indicating that the neural response was not influenced by the note onsets.
a.u. = arbitrary units.
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time lags from 0 to 15 msec for both guitar and piano
(Figure 4A). Indeed, significant reconstructions of the
guitar waveforms were obtained in 11 out of 17 partic-
ipants ( p ≤ .05), in 10 participants for the piano wave-
forms, and in 8 participants for both types of stimuli.
The reconstructions of the waveforms for the guitar
and for the piano were also significant at the population
level (Figure 4B; guitar: p = 1.6 × 10−2; piano: p =
1.54 × 10−3). Finally, on the population level, when
assessing the statistical significance of the stimulus
reconstructions using each of three windows of interest
(0–15, 15–30, and 30–45 msec), we found that only the
window from 0 to 15 msec yielded a significant recon-
struction accuracy, for either instrument (Figure 4C).

As the stimuli we used were derived from the left and
right hands of inventions, one may wonder whether two
instrument waveforms derived from the same piece are
independent and whether the neural responses to one
instrument could be used to decode the other one. This
is particularly relevant in the context of the attention
experiment where such an effect could obscure a putative

attentional modulation. However, the stimulus recon-
struction accuracy when mismatching the EEG–stimuli
pairs in such a way (0–15 msec reconstruction window)
was not significant as compared with the null distribution
using matched EEG–stimuli pairs and a −15 to 0 msec
reconstruction window (Figure 4D; guitar: p= .99, piano:
p = .96).
Armed with the ability to measure neural responses to

the temporal fine structure of the notes in a particular mel-
ody, we then investigated whether this response was
affected by selective attention. To this end, we analyzed
the CI stimuli, in which the participants had to attend
selectively to one instrument while ignoring the other.
We monitored attention by asking the volunteers to clas-
sify vibratos inserted into the melodic line played by the
target instrument. The participants exhibited varied per-
formances on this task; however, they all had an average
performance that was better than that of a random
observer, as shown by their receiver operating character-
istics, when selectively attending to either of the two
instruments (Figure 5A). Accordingly, at the population

Figure 4. Backward models that reconstruct the stimulus waveform from the EEG data in the SI condition. (A) In most participants, the backward
models gave a stimulus reconstruction that had a significantly larger correlation (dark color) with the original waveform than a null model (light
color). The volunteers were sorted by mean performance, and asterisks indicate p values (*p ≤ .05, **p ≤ .01, ***p ≤ .001). (B) The mean
reconstruction accuracy for each participant was used to test the significance of the reconstruction at the population level. Both the guitar and piano
stimuli could be reconstructed significantly better from the EEG recordings than from null models. (C) We also assessed the reconstruction of the
backward models using three windows of temporal delays of 0–15, 15–30, and 30–45 msec (dark colors) and compared them to a null model
obtained from the negative delays of−15 to 0 msec (light colors). Only the temporal window of 0–15 msec allowed for a stimulus reconstruction that
was significantly better than that of the null model. (D) Reconstructing one instrument waveform using the EEG recorded during the presentation of
the other instrument (0–15 msec window; dark colors) did not yield significant performances as compared with the null model derived by using
negative delays (−15 to 0 msec; light colors). Although the two instrument waveforms formed pairs corresponding to an invention, the waveform of
one instrument could not be predicted from the neural responses to the other instrument.
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level, the TPR was significantly larger than the FPR when
attending to either instrument ( p < 10−3 for guitar and
piano). The sensitivity index d0 was significantly larger
when attending to the piano than when attending to the
guitar ( p = 1.5 × 10−2), with an average value of 2.0
and 1.5, respectively (Figure 5B). The TPR did not differ

significantly between the two CI conditions ( p = .88;
Figure 5C), but the FPR was significantly higher when
the participants were attending to the guitar compared
with the piano (FPR: p = 1.79 × 10−3; Figure 5D).

To test for a putative attentional modulation of the
encoding of the stimulus temporal fine structure, we first
used backwardmodels with a window from 0 to 15msec to
reconstruct each instrument waveform when it was
attended as well as when it was ignored. The reconstruc-
tion accuracies did, however, not exhibit a statistically sig-
nificant difference between the attended and the ignored
case (Figure 6A; p= .49 for guitar and piano). To ascertain
the statistical significance of the reconstructions, we used
awindow from−15 to 0msec to provide a null distribution
of performance for each instrument and attention condi-
tion. Compared with this chance level, we found that the
piano and guitar, when they were attended and ignored,
yielded significant reconstructions (Figure 7A; guitar
attended: p = 6 × 10−4, guitar ignored: p = .013, piano
attended: p = 6 × 10−4, piano ignored p = 6 × 10−4).

We then computed a linear forwardmodel that included
two features, the attended and ignored instruments. The
linear forward model was trained using the pooled data
from the two CI conditions. The model then allowed us
to compare the amplitude of the attended and ignored
TRFs at each time lag from 0 to 15 msec. No significant dif-
ference between the amplitudes emerged at any temporal
lag (Figure 6B). Finally, linear forward models reconstruct-
ing cortical neural activity based on the note onsets for the
attended and ignored instruments were trained using the
pooled data from the two CI conditions. The amplitude of
the attended and ignored TRFs at each time lag was then
compared in an ROI from 50 to 200 msec. The amplitude
of the attended and ignored TRFs were found to signifi-
cantly differ at time lags from 100 to 160 msec (Figure 7B,
p ≤ .01).

Figure 5. Behavioral results for the vibrato classification, task.
Each circle represents a participant. (A) The receiver operating
characteristics show that each participant performed above chance level
in the CI condition, both when attending to the guitar (black) and when
attending to the piano (red). (B) The average sensitivity index d 0 was
significantly larger when attending to the piano than to the guitar ( p =
1.5 × 10−2) with an average value of 2.0 and 1.5, respectively. (C) The
rate of true positives was similar when attending to the guitar and then
attending to the piano. (D) Attending to the guitar led to more false
positives than attending to the piano ( p = 1.8 × 10−3).

Figure 6. Absence of attentional modulation of subcortical neural responses. (A) Backward models were trained to reconstruct the stimulus
waveforms for the guitar (black) and piano (red) in the CI conditions when they were attended or ignored. The reconstruction accuracies, as
assessed by the correlation coefficient between the reconstructed and the original signals, did not differ significantly between the attended versus the
ignored cases ( p = .49 for guitar and piano). (B) Population-averaged TRFs were derived over the two CI conditions taken together for the attended
(black) and ignored (red) instruments. The amplitude of the obtained TRFs did not significantly differ in the 0–15 msec ROI. Shaded regions denote
±1 standard deviation across participants around the mean TRFs. a.u. = arbitrary units.
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DISCUSSION

We showed for the first time that neural responses to the
temporal fine structure of continuous musical melodies
can be obtained from EEG recordings using linear convo-
lutivemodels. In particular, we demonstrated that the EEG
recordings could in part be predicted from the acoustic
waveforms (forward model; Figure 3). Vice versa, the tem-
poral fine structure of the musical stimuli could be
decoded from the corresponding EEG recordings (back-
ward model; Figure 4). Significant responses could be
obtained in most individual participants when they were
exposed to about 5 min of a single melodic line.

The neural response at the population level revealed
further information about its origin. Indeed, the significant
parts of the response, as obtained from the forward
models, emerged most strongly at the latency of 7.6 msec
(Figure 3A). The responses at the other latencies may have
reflected our use of high-pass filters for the EEG data,
which spread the response in time in both directions
(Widmann, Schröger, &Maess, 2015). The autocorrelation
of the filtered EEG data exhibited side lobes that are rem-
iniscent of the structure of some of the peaks that we
obtained in the neural responses (Figure 2C).

The backward model showed likewise that only delays
between 0 and 15 msec allowed for a significant recon-
struction of the stimulus waveform. Together with the
evidence from the forward model, these delays suggest a
subcortical origin of the neural response, putatively in the
inferior colliculus, although different subcortical struc-
tures may contribute as well (Bidelman, 2015, 2018; Skoe
& Kraus, 2010; Sohmer, Pratt, & Kinarti, 1977). Recent
MEG work indeed uncovered cortical contributions to
the FFR in humans (Ross, Tremblay, & Alain, 2020;
Hartmann & Weisz, 2019; Coffey et al., 2016), although
they may be limited to frequencies below 150 Hz

(Bidelman, 2018). The scalp-recorded FFR may accord-
ingly combine multiple subcortical and cortical sources
(Coffey et al., 2019). Although the neural response that
we have described here is arguably of subcortical origin,
our use of only two EEG channels may have obstructed
the observation of later cortical sources with different
dipole orientations.
Neural responses can occur to both transient (e.g.,

clicks, onsets) and sustained features of complex stimuli.
When investigating the FFR, for instance, these two
aspects can be segregated by time regions (Skoe & Kraus,
2010). However, the continuous nature of the stimuli that
we used here did not allow for this type of analysis.
Instead, we trained a forward model with stimulus wave-
forms where note onsets were suppressed and compared
it to a forward model trained using the intact waveforms
(Figure 3A, B). The two responses were strikingly similar,
suggesting that they are primarily driven by the sustained
periodic oscillations of individual notes rather than their
onsets. This may be expected, as these sustained oscilla-
tions accounted for most of our music stimuli. In a click
train, in contrast, the stimuli are entirely constituted of
transients.
When the participants were presented with stimuli con-

sisting of two competing instruments, they had to selec-
tively attend to one of them and identify vibratos that were
inserted in the melodic line of that instrument. We used
this task as a marker of selective attention, comparable
to the use of comprehension questions in the case of
speech stimuli. Correctly attributing the vibratos to the
appropriate stream (i.e., reacting only to the ones in the
attended instrument) required attentively monitoring
themelodies. Each competing piece contained 20 vibratos
in total (10 per instruments) for a duration of a few
minutes, thus yielding a vibrato every few seconds and
encouraging continuous engagement.We found thatmost

Figure 7. Additional controls and cortical attentional modulation. (A) Comparing the performance of the backward models in the CI condition to
null distributions revealed that they performed significantly better than chance, for both instrument and attention condition (guitar attended: p =
6.1 × 10−4, guitar ignored: p = .013, piano attended: p = 6.1 × 10−4, piano ignored: p = 6.1 × 10−4). (B) Training linear forward models to
reconstruct slow cortical neural activity (1–20 Hz) based on note onsets showed that population-averaged TRF exhibited attentional modulation in
the 100–160 msec region. a.u. = arbitrary units.

420 Journal of Cognitive Neuroscience Volume 34, Number 3



participants were able to identify the target vibratos while
ignoring the distractors (Figure 5). The sensitivity index
d0was significantly larger when attending to the piano than
the guitar. When attending to either instrument, the TPR
did not significantly differ, but the FPR was lower when
attending to the piano, indicating that this effect mediated
the difference in d0 values. The instrument mixing ratio
used in the current studywas determined following a small
pilot study to even out perceptual intensity and task diffi-
culty (Methods section), but it may have contributed to
this effect. We also hypothesize that because pianos can-
not naturally produce vibratos, the participants may have
had a bias leading to a higher propensity to attribute vibra-
tos to the guitar (Figure 5D).
The task of attending to one of two melodic lines

allowed us to investigate whether the neural response to
the temporal fine structure of a particular melodic line was
modulated by selective attention. Following our results on
the statistical methods for obtaining this neural response,
we employed backward models to reconstruct the stimu-
lus waveform from the EEG recording, using temporal
delays between 0 and 15 msec. We did not, however, find
any significant difference between the resulting recon-
struction accuracies of a melodic line when it was being
attended or ignored for either instrument (Figure 6A).
To verify this result using a different methodological
approach, we also trained a forward model that used the
attended and ignored instruments as features. Comparing
the amplitude of the attended and ignored TRFs between
0 and 15 msec did not reveal any significant difference
(Figure 6B).
Backward models have typically smaller reconstruction

accuracies in competing conditions than in response to
isolated targets. This has not prevented previous work
from observing attentional modulation (Etard et al.,
2019; Forte et al., 2017; O’Sullivan et al., 2015) but is prob-
lematic if the observedmodel performances are not above
chance level. To ensure that the reconstructions we
obtained were indeed relevant, we confirmed that they
were significantly greater than null distributions for both
instrument and attention condition (Figure 7A).
Finally, we trained forward models to reconstruct corti-

cal neural activity using features encoding the note onsets
of the attended and ignored instruments. Comparing
the amplitude of the obtained TRFs in an ROI from 50 to
200 msec, we found that a significant difference emerged
from 100 to 160 msec (Figure 7B), in a similar manner to
the attentional modulation observed in continuous
speech (N100; Ding & Simon, 2012a). This indicates that,
although we could not observe any modulation in the
subcortical responses, the low-frequency cortical neural
activity did exhibit an attentional modulation consistent
with the behavioral task.
Our negative finding regarding attentional modulation

contrasts with previous work on similar neural responses
to the temporal fine structure of speech that were found to
be modulated by selective attention (Etard et al., 2019;

Forte et al., 2017). It also contrasts with recent MEG work
that showed that the cortical components of the FFR can
be modulated by intermodal attention (Hartmann &
Weisz, 2019).

These differences may point to underlying differences
between music and speech. First, the two melodic lines
that we used in the present work may have been difficult
to selectively attend, because they originated from one
musical piece, were contrapuntal, and often followed or
responded to each other. The resulting interaction
between the two melodic lines makes their juxtaposition
rather different from that of two independent competing
voices that do not interact but merely generate informa-
tional and acoustical masking. Although two competing
speakers may encourage selective attention and neural
processing of one of them, our two melodic lines may
therefore rather encourage attention, as well as neural
processing, of the acoustic mixture.

Silences in the target instrument could also favor shifts
of attention and potentially undermine neural markers of
selective attention. However, silences in one of the two
competing streams are not exclusive to music but form,
for example, an intrinsic part of continuous speech as well,
contributing to its rhythm by separating words, phrases,
and sentences. In the current study, the stimuli were
nonetheless chosen to minimize the amount of time
where only one of the two instruments was playing in
the competing condition to mitigate this effect. We found
that the passages in which one instrument was silent
accounted for 13%± 4% of the duration of the competing
stimuli (mean ± standard deviation over the six inven-
tions), which is comparable to the duration of silences in
previous speech studies. It is thus unlikely that these alone
would explain the observed absence of attentional
modulation.

Second, musical training was not an inclusion criterion
in this study. Conversely, the subjects participating in a
competing speaker experiments effectively have a lifelong
training in isolating one speaker from noise because of the
relevance of this task in daily life. As already hinted at
above, we speculate that musical stimuli are instead gen-
erally perceived as a whole and that most our participants
were unfamiliar with focusing on one of several instru-
ments. We indeed observed important variability in the
volunteer’s performance during this study (Figure 5). Seg-
regation of sources relies on acoustic cues (Moore &
Gockel, 2012) but also on learnt patterns of the stimulus
regularities. Yamagishi, Otsuka, Furukawa, and Kashino
(2016) furthermore showed that FFR responses in a bis-
table “A-B-A” streaming experiment were modulated by
thalamocortical activity according to the participants’
perception. The acoustic cues alone and lack of experi-
ence of the participants in this study may not have allowed
them to modulate their lower-level stimulus representa-
tion. The discrepancy between this study and previous
speech results suggest that this modulation may be task
dependent and rely on experience, rather than generic.
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Musicians, in contrast, may in general bemore familiar and
trained at this task, and previous studies have indeed dem-
onstrated that subcortical encoding of the temporal fine
structure and FFR responses can exhibit long-term plastic-
ity and that they can be modulated by musical experience
(Kraus & White-Schwoch, 2017; Bidelman, Gandour, &
Krishnan, 2011; Bidelman, Krishnan, & Gandour, 2011).
Accordingly, musicians might exhibit attentional modula-
tion of the neural response to the temporal fine structure
of melodies, although people without musical training
might not.

Finally, this study design was informed by published
work analyzing similar neural responses to speech (Etard
et al., 2019; Maddox& Lee, 2018; Forte et al., 2017). A com-
bination of the factors listed above may have contributed
to produce neural responses differing from the ones pre-
viously reported for speech stimuli and thus yielding no
attentional modulation or one of a much smaller magni-
tude that could not be detected here. Further work is
required to disentangle the potential effects of these
hypotheses.

Music is a rich signal that consists of many transient and
sustained features. Here, we focused on the comparatively
high-frequency neural response to the temporal fine
structure. Other features, however, could be studied as
well from the same stimuli, including notably cortical
responses to amplitude fluctuations. Similar cortical
responses to continuous speech have received significant
attention in the past years and have been shown to reflect
attention (O’Sullivan et al., 2015; Ding & Simon, 2012a;
Power, Foxe, Forde, Reilly, & Lalor, 2012) as well as
semantic features (Broderick, Anderson, Di Liberto,
Crosse, & Lalor, 2018), surprisal (Weissbart, Kandylaki,
& Reichenbach, 2020), or comprehension (Etard &
Reichenbach, 2019; Kösem & van Wassenhove, 2017). It
has indeed been found recently that the cortical encoding
of sequences of tones in a melody reflects a listener’s
expectation of the upcoming notes (Di Liberto et al.,
2020). Studying the interaction of such cortical responses
with the subcortical activity related to the temporal fine
structure that we have uncovered here may further clarify
the neural mechanisms that allow us to perceive complex
musical stimuli in their entirety, while also allowing us to
selectively focus on a particular instrument or melodic line.
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