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ABSTRACT:
Seeing a speaker’s face can help substantially with understanding their speech, particularly in challenging listening

conditions. Research into the neurobiological mechanisms behind audiovisual integration has recently begun to

employ continuous natural speech. However, these efforts are impeded by a lack of high-quality audiovisual record-

ings of a speaker narrating a longer text. Here, we seek to close this gap by developing AVbook, an audiovisual

speech corpus designed for cognitive neuroscience studies and audiovisual speech recognition. The corpus consists

of 3.6 h of audiovisual recordings of two speakers, one male and one female, each reading 59 passages from a narra-

tive English text. The recordings were acquired at a high frame rate of 119.88 frames/s. The corpus includes phone-

level alignment files and a set of multiple-choice questions to test attention to the different passages. We verified the

efficacy of these questions in a pilot study. A short written summary is also provided for each recording. To enable

audiovisual synchronization when presenting the stimuli, four videos of an electronic clapperboard were recorded

with the corpus. The corpus is publicly available to support research into the neurobiology of audiovisual speech

processing as well as the development of computer algorithms for audiovisual speech recognition.
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I. INTRODUCTION

Visual cues play a prominent role in natural communi-

cation. Seeing a talker’s face can have a large benefit on

speech comprehension, in particular in the presence of back-

ground noise (Reisberg et al., 1987; Ross et al., 2007). This

audiovisual benefit occurs across the scale of linguistic

units, from syllables (Bernstein et al., 2004) to words

(Sumby and Pollack, 1954) and sentences (Grant and Seitz,

2000). Automatic speech recognizers can similarly benefit

from the additional information contained in a speaker’s

facial movements (Matthews et al., 2002).

Studies on the neural mechanisms that yield audiovisual

integration traditionally employed brain imaging techniques

to investigate participants’ responses to short speech tokens

such as phonemes and syllables. Neural responses to such

short stimuli were commonly analyzed by averaging hun-

dreds of response trials time-aligned to the onset of their

repetitive stimuli to obtain event-related potentials (ERPs)

(Luck, 2014). The requirement for suitable stimuli in such

paradigms can be fulfilled by researchers recording the

material themselves (Brown et al., 2018; Hauswald et al.,
2018; McGurk and MacDonald, 1976; M�egevand et al.,
2020; Sumby and Pollack, 1954) or by employing one of

many corpora published to support the development of auto-

matic speech recognition.

The first audiovisual speech datasets, including TULIPS1

(Movellan, 1995) and AVletters (Matthews et al., 2002),

accordingly consisted of few speakers reading digits and let-

ters. Later datasets, for instance XM2VTS (Messer et al.,
1999), AVICAR (Lee et al., 2004), GRID (Cooke et al.,
2006), VidTIMIT (Sanderson and Lovell, 2009), BL

(Benezeth et al., 2011), TCD-TIMIT (Harte and Gillen,

2015), MODALITY (Czyzewski et al., 2017), LRS (Chung

et al., 2017), or RoomReader (Reverdy et al., 2022) provided

complete sentences, a larger volume of recordings, and

included several additional features such as high frame rates,

different camera angles, lip highlighting, spontaneous conver-

sation, multimodal cues of conversational engagement and

behavioral aspects of collaborative interaction. These data-

bases were primarily designed to support the development of

algorithms for audiovisual speech processing and recognition,

speaker identification and detection, affective state recogni-

tion, and talking head generation.

These audiovisual speech corpora have been used

extensively to study neural mechanisms of audiovisual

speech processing as well. However, the continuous and

complex nature of natural speech is not entirely reflected in

the short stimuli and limited lexicon of these speech materi-

als (Sonkusare et al., 2019). Recent advances in analysis

methodologies and computational power have allowed

researchers to investigate neural responses to increasingly

complex stimuli including ongoing natural speech (Crosse

et al., 2016; Ding and Simon, 2012, 2014; Giraud anda)Electronic mail: tobias.j.reichenbach@fau.de
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Poeppel, 2012; Marmarelis, 2004; Moses et al., 2016).

These studies have typically employed audiobooks as a

practical solution to present ecologically valid speech to

participants.

Audiovisual corpora of continuous speech are less

common, however, due to the resources required to assem-

ble and process the material (Chitu and Rothkrantz, 2007).

The most commonly employed option to date is a series of

weekly addresses made by a well-known male talker speak-

ing on contemporary social, political, and economic issues

(O’Sullivan et al., 2017; Suwajanakorn et al., 2017). While

several hours of audiovisual speech are available, the fram-

ing is not consistent and the content, tone, and familiarity of

the speaker could impact the obtained results in unintended

ways. Other works recommend employing established cor-

pora of short sentences such as TCD-TIMIT (Crosse et al.,
2021).

Furthermore, when presenting multimodal material to

subjects in an electroencephalography (EEG) or magnetoen-

cephalography study, the precise synchronization of the dif-

ferent sensory streams must be tightly controlled to take

advantage of the high temporal resolution of the recordings

(Crosse and Lalor, 2014; Schultz et al., 2020). While many

electrophysiological studies investigate low-frequency neu-

ral oscillations, the precise latency of responses is important

to establish the order of hierarchical neural processes and to

improve the signal-to-noise ratio by reducing jitter across

and within trials. The low frame rate of 30 frames/s (fps) of

the majority of corpora, including the aforementioned cor-

pus of speeches by a male politician, but with the notable

exception of the short sentence MODALITY corpus, limits

the precision in audiovisual alignment to 33 ms. In addition,

high-rate videos may also be useful for extracting features

from the video for feature and stimuli reconstruction.

The AVbook corpus that we present here is a narrative

audiovisual speech corpus that significantly extends the lim-

ited current pool of continuous speech corpora while provid-

ing additional features aimed at facilitating language and

neuroscience research. The material consists of 3.6 h of

high-frame-rate and high-resolution recordings of two

trained speakers, one male and one female, reading the

same, curated, narrative text. The framing is consistent due

to the employment of a teleprompter and the speakers voice

is recorded with a professional clip-on microphone, yielding

high-quality recordings that are also suitable for audio-only

experiments. This may, in turn, enable closer comparison

between uni-modal and multimodal speech processing.

II. THE CORPUS

The book,“Endurance: Shackleton’s Incredible Voyage
to the Antarctic” by Lansing (1959), was selected as the

source for the corpus content for its compelling narrative,

with the experimental participants’ enjoyment and attention

in mind. The first eight chapters of the book, constituting

Part 1, were divided into 59 passages with an average word

count of 335. The original text was lightly edited to partition

it into contextually complete passages and to remove out-

dated vocabulary and direct speech. The latter action was

taken to aid the speakers in producing a neutral tone without

overly salient parts.

A. Collection

The audiovisual recordings were obtained in a quiet stu-

dio at Imperial College London, UK. The studio was

enclosed in solid walls but was not further sound-proofed.

Recordings were obtained using a Sony A7S II camera

(Sony Corporation, Japan) mounted in a teleprompter. The

audio material was recorded concurrently through the cam-

era’s auxiliary sound port connected to a Sennheiser EW100

clip-on radio microphone (Sennheiser, Germany). The

speakers wore the microphone on their clothing and sat on a

chair at a distance of 3 m from the teleprompter and the

camera. The camera was oriented in landscape and framed

the speaker’s head, shoulders, and chest against a gray

background.

The camera was set to record at the frame rate of

119.88 fps (precisely, 120/1.001) and with a resolution of

1280� 720 pixels. The single channel audio was recorded at

48 kHz with 32 bit resolution.

The speakers, both professional actors, one female and

one male, were recruited online and selected based on a

video audition for their neutral British accent and clear

speech. They were directed to keep their heads still, face the

teleprompter, and speak with a neutral tone of voice. The

scroll speed of the teleprompter was adjusted to suit the

speakers’ preferred pace. If mistakes in speaking occurred

during the production, the corresponding segment was re-

recorded following a pause that was later cut in post-

processing. This resulted in an average passage length of

111 and 104 s, with an average speech rate of 182 and 192

words/min, for the female and male speakers, respectively.

B. Post-processing

The recordings were edited on Adobe Premiere CC 2019

(Adobe Inc., San Jose, CA). Inhalation sounds, hesitations,

and speech production or pronunciation mistakes were cor-

rected by cutting the audio during pauses in the speech and

by introducing re-recorded material. Video jumps and audio

clicks due to cuts were smoothed out with filters and transi-

tions, and care was taken to minimize the overlap of these

transitions with speech production. Since such edits may

influence neural responses depending on experimental design

and analysis technique, the raw recordings are also made

available with the corpus. Researchers wanting full control of

the stimuli may thus perform their own editing. The framing

was cropped around the speaker’s face and neck to a vertical

orientation with a resolution of 528� 718 pixels. Five exem-

plary frames from each speaker are shown in Fig. 1.

The resulting 59 videos were exported into mp4 container

files using the h.265 video codec and the advanced audio cod-

ing (AAC) audio codec at the recording frame rate of 120/

1.001 fps and 48 kHz with 16 bit resolution, respectively. No
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clipping was observed in the audio and no further processing

was performed.

The audio was also separately exported as a WAVE

file. An a priory signal-to-noise ratio (SNR) was estimated

using a voice activity detection (VAD) script (Brookes,

2022) following the ITU-T P.56 standard (ITU-T, 2011).

The average SNR was found to be 34.0 6 2.9 dB and 44.5

6 7.1 dB for the female and male speakers, respectively

(mean and standard deviation). Similar results were obtained

when employing a custom-tuned VAD script or by calculat-

ing the SNR by comparing silent video segments which

were cut out of the final corpus (less than 1 dB difference in

both cases for both speakers).

To investigate the spectral properties of the voices, we

computed the average frequency content of the speech sig-

nals for both speakers. Figure 2 depicts the magnitude of

the normalized frequency content on a logarithmic fre-

quency scale. This analysis shows differences in the spec-

tral characteristics between the female and male speakers.

In particular, it highlights the different fundamental fre-

quencies of the two voices (about 111 Hz on average for

the male voice and about 176 Hz on average for the female

voice).

C. Script, comprehension questions, and summaries

The precise wording pronounced by each speaker was

checked against the script by hand. A few inconsistencies

and mispronunciations that could not be corrected during

the editing process were annotated in the teleprompter script

file.

A short summary text was also produced for each video

segment. This text gave an overview of the content of the

respective passage.

Furthermore, four multiple-choice questions were writ-

ten for each passage, each with one correct and two incor-

rect options. The questions were carefully drafted to avoid

revealing the answers to those about later passages while

minimizing the number of correct answers identifiable by

general knowledge, context, or information contained in

previous passages.

D. Words, phonemes, and timing

In addition to the original script for each passage, pho-

netic information was extracted from the corpus using the

Montreal forced aligner (McAuliffe et al., 2017). The output

consists of TextGrid files containing the word and phone

level segmentation for each passage and speaker, and is pro-

vided with the corpus. The alignment between these files

and the corresponding audio files were then manually

checked using Praat (Styler, 2013).

The analysis of word and phonetic features has been

useful in linguistic and neuroscience studies, allowing, for

FIG. 1. (Color online) Example frames from the AVbook corpus. The upper row shows five frames taken from the female speaker and the bottom row shows

five frames taken from the male speaker.

FIG. 2. Normalized frequency content of the speech signals for the female

and male speakers, plotted on a logarithmic frequency scale.
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example, to obtain phonetic and word-level information

from EEG responses to naturalistic speech (O’Sullivan

et al., 2021; Weissbart et al., 2020). In addition, such infor-

mation can also be used to design stimuli based on phonetic

markers rather than acoustic features (Guilleminot and

Reichenbach, 2022).

III. SYNCHRONIZATION

When employing the AVbook material in behavioral or

neuroscientific studies, the synchronization of the audio and

the visual signal is essential. To enable precise synchroniza-

tion, four videos of an electronic clapperboard were

recorded under the same conditions and with the same

equipment as the audiovisual speech material. These 60 s

synchronization videos were post-processed and exported in

the same manner as the audiovisual speech material.

A. Synchronization material

The electronic clapperboard, depicted schematically in

Fig. 3(A), consisted of a red light-emitting diode (LED) and a

passive breadboard buzzer, both powered in parallel by a GW

Instek GFG-8219A (Instek, Taiwan) signal generator produc-

ing a 2.5 kHz sine wave. A mechanical switch connected in

series with the signal generator was operated irregularly to

generate a non-periodic on/off signal to power the diode and

buzzer intermittently. The buzzer was found to have a

negligible constant response time of 0.3 ms, while LEDs have

even shorter response times of a few nanoseconds. The image

of the LED and the recording of the buzzer sound contained

in the synchronization videos can therefore serve to align the

audio and the video signals of the AVbook corpus.

To ensure that the latency correction translates well to

the longer passage files, a further check signal was included.

This consisted of a small 200� 100 pixel video containing a

square that pseudo-randomly flipped between black and

white [Fig. 3(B)]. This video was overlaid onto a corner of

the corpus videos and the videos of the electronic clapper-

board using the -filter_complex command in FFmpeg

(https://www.ffmpeg.org/).

B. Audiovisual alignment for presentation
of the AVbook

A diagram of the proposed AVbook presentation solu-

tion, and of a method for aligning the audio and the visual

signals, is shown in Fig. 4. A custom-written stimulus pre-

sentation software module was employed to control the

playback of the video of the electronic clapperboard. The

brightness of the image of the red LED was recorded simul-

taneously to the presented audio stream containing the

buzzer sound. The cross correlation between the envelopes

of the visual and the audio signals was then computed to

determine the latency between both stimuli. The envelopes

were computed from the absolute value of the Hilbert

FIG. 3. (A) Schematic depiction of the methodology for producing the audiovisual speech corpus and the synchronization material obtained by filming an

electronic clapperboard. The same protocol was employed to record videos of the speaker and electronic clapperboard. The latter consisted of occasional,

correlated emissions of sound and light. The videos were then edited and shared on an online database. (B) A second synchronization signal consisted of a

small 200� 100 pixel video. The video contained a square which pseudo-randomly flipped between black and white. This video can be overlaid onto a cor-

ner of the corpus videos to enable an additional check of synchronization.
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transform of the signal and through filtering with a zero-lag

forward–backward filter. A corresponding inverted latency

shift can then be applied in the presentation software so that

the resulting visual and audio stimuli are aligned.

Once the audiovisual latency correction is determined

and applied, any residual latency during playback of the nar-

rative AVbook videos can be measured by recording the

brightness of the screen area corresponding to the overlaid

tracking signal. To this end, one can first determine the

onset time of the audio component of the passage (with

respect to overall recording start time) by computing a cross

correlation between the simultaneous recordings of the pre-

sented audio (as obtained with an audio cable splitter

plugged into the headphone input) and the original audio

waveform (as extracted from the WAVE files). The onset

time of the video component of the passage can similarly be

determined by cross correlating the recording of the bright-

ness of the overlaid portion of the video with the binary

array from which the tracking overlaid video was generated.

The difference between the start times of the audio and

video streams yields the residual latency.

C. Presentation hardware and module

In a test of the presentation setup, the audio stimulus was

delivered diotically at a level of 70 dB(A) SPL through ER-

3C insert earphones (Etymotic, USA) and a high-

performance sound card (Xonar Essence STX, Asus, Tapei,

Taiwan). The sound level was calibrated with a type 4157 ear

simulator (Br€uel & Kjaer, Denmark). The video component

was presented through a Radeon Pro WX 3100 graphics card

(Advanced Micro Devices, Inc., USA) and a 24 in. flat-screen

monitor (24GM79G, LG, South Korea) with a maximal

refresh rate of 144 Hz set at a refresh rate of 119.88 Hz. The

test was conducted on a HP desktop computer running

Windows 10 version 21H2 64-bit operating system

(Microsoft Corporation, Palo Alto, CA) equipped with a four-

core Intel Xeon W-2102 CPU running at 2.90 GHz (Intel

Corporation, USA) and 32 GB of random-access memory.

A Python 3.7 script calling the VideoLan Client (VLC)

media player (Videolan, https://www.videolan.org/) through the

python-vlc library (Python-vlc, https://pypi.org/project/python-

vlc/) was found to be the most reliable way to decode and pre-

sent videos in the h.265 video codec synchronously to the audio

material. The residual timing difference between the audio and

the video stimulus was corrected using the -itoffset FFmpeg flag

called through the subprocess Python module (see Fig. 4).

When piloting the setup, a 30 ms offset of the residual

timing difference (but no difference in jitter standard devia-

tion) was found between the Asus Xonar Essence STX sound

card and the builtin HP Realtek High Definition Audio sound

card of the desktop computer employed.

D. Recording hardware

An integrated electrophysiological recording amplifier

(actiCHamp, BrainProducts, Germany) was used to record the

image of the red LED and the sound of the buzzer in the syn-

chronization videos. The visual signals were measured with a

photodiode (Photo Sensor, BrainProducts, Germany) and the

acoustic stimulus through an acoustic adapter (StimTrak,

BrainProducts, Germany) which were plugged into the auxiliary

ports of the integrated amplifier. The combined data stream was

then acquired through PyCorder (BrainProducts, Germany) at a

sampling rate of 10 kHz, therefore allowing for an estimation of

the temporal delay between the visual and the audio stimulus

with a precision of 0.1 ms.

FIG. 4. Schematic depiction of the equipment and pipeline for presenting the audiovisual stimuli and for measuring the latency between the visual and the

audio signal. The AVbook corpus can be edited for presentation with a Python routine using the FFmpeg software through the subprocess module, which

allows for audiovisual manipulations such as latency correction or noise masking. This is then followed by a playback call to the VLC media player through

the python-vlc bindings module.

FIG. 5. Delay of the audio signal with respect to the visual stimulus over

the duration of a video of the electronic clapperboard, for several trials.

Before correcting for the delay in the presentation software (dashed), the

average delay was 41.7 ms. After correction (solid), we obtained a negligi-

ble mean delay of 0.6 ms.
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E. Results

A sliding window cross correlation analysis of the enve-

lopes of the recordings of the photodiode and acoustic

adapter signals from the synchronization videos was per-

formed to determine the delay of the audio signal with

respect to the video stimulus over the runtime of the video

(Fig. 5). The average offset over eight trials (two for each of

the four electronic clapperboard recordings) was found to be

41.7 ms. This offset was stable within trials, with a maxi-

mum difference of 1.08 ms detected across the 60 s runtime,

and jittered by a maximum observed amplitude of 9.19 ms

between different trials (or roughly 6 0.5 frames from the

mean value). Despite extensive hardware and software opti-

mization, this jitter was not accounted for and is assumed to

arise from limitations in the precision of audio and video

binding due to the relationship between the jitter and the

video frame rate. It is, however, worth noting that the pro-

posed python-vlc playback solution was found to be the

most stable protocol by a significant margin. Increases in jit-

ter appeared when the video frame rate did not match the

frame rate of the monitor (an additional within trials jitter of

6 1.5 frame periods on top of the jitter of the optimal solu-

tion, and 6 0.5 frame periods across trials), when the video

was exported at 120 rather than 120=1:001 fps and played

with the monitor on the 120 fps setting (an additional 61

frame periods within trials and 61.5 frame periods

across trials), when played through tkvlc (available from

PyTkinterVLC, https://pypi.org/project/tkvlc/, an additional

60.5 frame periods across trials), and when played through

the video player integrated within the PsychoPy presentation

application (https://www.psychopy.org/, 615 frame periods

within trials, see discussion at https://discourse.psycho-

py.org/t/moviestim3-issues-regarding-high-fps/6468).

Correcting for the mean delay in the presentation soft-

ware and repeating the latency measurement with the elec-

tronic clapperboard signal resulted in a negligible mean

offset of 0.6 ms, with a maximum observed jitter amplitude

of 8.87 ms across trials. As expected, the post-correction

latency difference measured in the overlaid signal was found

to be 40.4 ms, a value within residual measurement error of

the prescribed latency correction of 41.7 ms.

IV. COMPREHENSION TESTS

To validate our multiple-choice comprehension ques-

tions, we conducted a behavioral experiment in which sub-

jects were presented with stimuli from the AVbook corpus

and subsequently with the corresponding multiple-choice

questions.

A. Participants

Seventeen native English speakers, 10 female, with

self-reported normal or corrected-to-normal vision and nor-

mal hearing volunteered to take part. The participants were

between 18 and 29 yrs of age, with a mean age of 23 yrs. All

participants were right-handed and had no history of mental

health problems, severe head injury, or neurological

disorders. Before starting the experiment, participants gave

informed consent. The experimental protocol was approved

by the Imperial College Research Ethics Committee.

B. Stimuli presentation

The experiment took place in an acoustically and elec-

trically insulated room (IAC Acoustics, United Kingdom).

The same equipment and settings as employed in the audio-

visual synchronization experiment were used to control the

audiovisual presentation and data acquisition.

We considered three types of stimuli. The first was

audio-only speech in stationary, speech-shaped background

noise. The second condition was audiovisual speech, also in

speech-shaped background noise. In both conditions, the

speech was presented at a constant signal-to-noise ratio of

�2 dB. The third condition was visual-only speech, with no

sound presented.

Subjects listened to 54 passages from the corpus. The

three conditions were randomized between the different pas-

sages. Between each passage, the participants were tasked

with answering the corresponding AVbooks comprehension

questions and then to read the summary before proceeding

to the next passage. The speech comprehension score was

computed as the average percentage of correct answers for

each of the three conditions.

C. Results

The comprehension score (Fig. 6) was found to be 55.3%

6 3.5% (mean and standard error of the mean) in the audio-

only condition, 60.6% 6 2.8% in the audiovisual condition,

and 34.1% 6 2.9% in the visual-only condition. Participants

scored better than chance level (33:3 %) in the audio-only and

in the audiovisual condition (p ¼ 1:7� 10�5, t¼ 6.0 and

p ¼ 2:0� 10�7, t¼ 8.8, respectively, one sample Student’s

t-test with two-stage Benjamini–Hochberg false discovery rate

FIG. 6. Speech comprehension scores for the AVbook in background noise

without a visual signal (audio only), for the audiovisual stimulus, as well as

for lip-reading of the video only. Error bars represent the standard error of

the mean, and the dark gray points show the average score per participant.

The comprehension scores in the audio-only and the audiovisual condition

are significantly above the chance level (dashed line; � � �; p < 0:001)

while the average comprehension score in the visual-only condition is very

near the chance level.
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correction). On the other hand, subjects did not perform above

chance level in the visual-only condition (p¼ 0.75, t¼ 0.3).

The difference between the scores in the audio-only and

audiovisual conditions was not significant (p¼ 0.14, t¼ 1.6,

two-sided, paired Student’s t-test).

V. CONCLUSION

An audiovisual corpus, AVbook, of narrated, continu-

ous speech was collected to support the investigation of

audiovisual speech perception in neuroimaging and behav-

ioral studies. Although the corpus is limited to two speakers,

the high frame rate may make it an attractive option for

developing and benchmarking computer algorithms of

audiovisual speech processing as well.

The corpus passages were chosen to yield high attention

and engagement from experimental subjects. In case the

passages were not fully comprehensible to participants, for

instance due to the inclusion of background noise or due to

presentation of the visual stimulus alone, a short written

summary was produced for each video segment. Providing

this summary text before presenting the next passage may

help keep a subject’s engagement at a high level.

We developed comprehension questions that accom-

pany the AVbook corpus, and tested these in a behavioral

experiment. Our finding that participants scored well above

chance when they could hear the speech material, but that

their performance was at chance level when they could only

lip-read suggests that the question set is fit for purpose.

While piloting work showed that all questions can be

answered correctly in quiet listening conditions or by read-

ing the script of the corresponding passage, some questions

may represent a significant memory test and not all subjects

could answer them correctly in the presence of background

noise. The question set can, however, still differentially evi-

dence attention deficits and audiovisual integration gain

across participants, as is reinforced by the observation that

participants scoring at chance level in the audio-only condi-

tion were equally likely to score significantly above chance

or again at chance level in the audiovisual condition.

On the other hand, our behavioral experiment revealed

no significant difference between the audio-only and the

audiovisual conditions. This presumably reflected that the

questions were designed to test participants’ understanding

of the stories and attention to it, and not for a highly accu-

rate quantification of comprehension. The latter aim may be

better pursued using single semantically unpredictable sen-

tences that are assessed for the comprehension of key words,

such as in the GRID corpus (Cooke et al., 2006).

We also developed a method, an electronic clapper-

board, to temporally align the audio and video stimuli

precisely and reliably. Our synchronization experiment,

aided by the videos of the electronic clapperboard,

yielded a negligible mean latency that remained consis-

tent within trials and jittered by roughly one frame (8.34

ms) across trials.

Due to the precise audiovisual synchronization, the

AVbook corpus will allow the neuroscience community to

extend work done in the audio-only modality with tradi-

tional audiobook corpora to include the visual domain. Such

studies could tackle the effect of audiovisual speech on neu-

ral responses related to attention (O’Sullivan et al., 2015) or

linguistic factors such as surprisal (Weissbart et al., 2020).

Furthermore, a consistent use of audiovisual speech material

across English-speaking geographies, equipment, and exper-

imental paradigms may help compare and reproduce results.

Further, due to its consistent framing and high frame

rate, the AVbook corpus may be an attractive option for

computational studies and therefore support the use of com-

mon material in language, speech perception, and automatic

speech recognition work, similarly to what the GRID and

VIDTIMIT corpora achieved in the context of short senten-

ces (Varano et al., 2022).

Last, the AVbook corpus has the potential to guide the

design of speech enhancement algorithms in hearing aids:

audiovisual speech has recently been shown to enhance

auditory attention decoding, a technique used to identify the

attended speaker in an auditory selective attention task using

analysis of EEG data (Fu et al., 2019).

The complete corpus, phone-level segmentation files,

synchronization material, teleprompter scripts, comprehen-

sion questions, summary texts, and raw video recordings

are available to download for research use (Zenodo, https://

zenodo.org/record/7387047).
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