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ABSTRACT Many people with hearing loss struggle to comprehend speech in crowded auditory scenes,
even when they are using hearing aids. However, the focus of a listener’s selective attention to speech can be
decoded from their electroencephalography (EEG) recordings, raising the prospect of smart EEG-steered
hearing aids which restore speech comprehension in adverse acoustic environments. Here, we assess
the feasibility of using a novel, ultra-wearable, ear-EEG device to classify the selective attention of
normal-hearing listeners who participated in a two-talker competing-speakers experiment. State-of-the-art
auditory attention decoding algorithms are compared, including stimulus-reconstruction algorithms based
on linear regression as well as non-linear deep neural networks, and canonical correlation analysis (CCA).
Meaningful markers of selective auditory attention could be extracted from the ear-EEG signals of all
participants, even when those markers are derived from relatively short EEG segments of just 5 s in duration.
Algorithms which relate the EEG signals to the rising edges of the speech temporal envelope are more
successful than those which make use of the temporal envelope itself. The CCA algorithm achieves the
highest mean attention decoding accuracy, although differences between the performances of the three
algorithms are both small and not statistically significant when EEG segments of short durations are
employed. In summary, our ultra-wearable ear-EEG device offers promising prospects for wearable auditory
monitoring.

INDEX TERMS Auditory attention decoding, EEG, hearables.

I. INTRODUCTION

People with hearing loss often struggle to comprehend speech
in noisy environments, even when they wear their hearing
aids [1], [2]. Various interventions have been developed
to address this problem; for example, modern hearing aids
incorporate advanced noise suppression technologies, which
can reduce the impact of interfering sounds such as wind
and other non-speech noises [3]. In cocktail-party scenarios,
where the interfering sounds are also speech, a hearing aid
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must first identify the target speaker, and then selectively
amplify that voice alone. If the target speaker is known
a priori (for example, it is the teacher in a classroom
environment), then the voice of that speaker can be wirelessly
transmitted to hearing aid users via a hearing loop [4]. In more
spontaneous settings such as social scenarios, beamforming
technologies are usually utilised [5]. These rely on directional
microphones to identify the direction of the listener’s head,
and attempt to selectively amplify sounds emanating from
that direction.

Amongst these interventions, only beamforming hearing
aids offer users the ability to selectively and spontaneously
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choose which voice to enhance. In everyday environments,
however, beamforming hearing aids often provide only
limited benefits to their users [6], [7]. This limitation
arises because individuals do not constantly orient their
head towards a target speaker during naturalistic listening.
Furthermore, interfering speech can easily divert the listener’s
attention and shift the direction of their gaze away from the
intended speaker [8]. Whilst listeners can learn to adapt their
behaviours in order to experience the maximum benefit from
their beamforming hearing aids, even with practice they may
struggle to quickly reorient their gaze when the focus of their
attention changes location or is re-directed. This means that
beamforming technology can actually increase the difficulty
of locating off-axis sources for hearing-aid users [9], [10].

Alternative techniques for determining the focus of a
listener’s attention may be used in place of, or in conjunction
with, beamforming algorithms. Recent research has demon-
strated that the focus of a listener’s selective attention to
speech can be decoded from neuroimaging data [11], [12],
[13]. If a discreet and wearable brain monitoring device
can be incorporated into a hearing aid, then it may be
possible for the user to control the hearing aid through
their attentional focus alone [14], [15], [16]. Most studies
identify electroencephalography (EEG) as the most suitable
neuroimaging modality for real-world auditory attention
decoding, due to its relative accessibility, its high temporal
resolution, and the variety of wearable EEG devices which
are already commercialised.

Usually, auditory attention is decoded from EEG
recordings through a technique known as stimulus-
reconstruction [13], [17], [18]. This involves training regres-
sion models (known as backward models) to reconstruct
features of the speech stimuli from time-aligned EEG signals.
The feature of choice is typically taken to be the temporal
envelope of speech, since this feature is strongly represented
in EEG responses to speech [19]. Moreover, the strength of
the EEG response to the speech envelope is modulated by
selective attention, with responses to the attended speech
envelope being dominant [12]. Typically, the strength of
the response is assessed by determining the accuracy with
which the attended and ignored speech envelopes can be
reconstructed from the EEG signals using regression models,
by taking the Pearson correlation between the reconstructed
envelopes and the ground-truth envelopes [13]. The speech
stream which yields the greatest Pearson correlation is then
taken as the estimated attended stream.

Studies which make use of the stimulus-reconstruction
approach to auditory attention decoding utilise underlying
regression models which fall into two broad categories:
linear models (typically based on ridge-regularised least-
squares regression), and non-linear models implemented
as deep neural networks [13], [14], [20], [21], [22],
[23]. Stimulus-reconstruction approaches based on deep
neural networks typically achieve higher attention decoding
accuracies than their linear counterparts, since they can
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account for the non-linear processing of the human auditory
system. Some studies have also demonstrated that deep
neural networks can generalise between participants and
datasets remarkably well [24], [25]. As an alternative to
the stimulus-reconstruction approach, canonical correlation
analysis (CCA) can be used to relate EEG recordings to
the speech envelope, and subsequently decode auditory
attention [26], [27]. This algorithm applies linear transfor-
mations to both the EEG signals as well as the speech
envelope signals in order to produce pairs of maximally-
correlated components. By applying a linear classifier to
the resulting correlation coefficients, a marker of selective
attention to each competing speech stream can be obtained.
In their review study, Geirnaert et al. [14] identified CCA
as the best auditory attention decoding algorithm, outper-
forming all linear and non-linear stimulus-reconstruction
approaches.

Most auditory attention decoding studies make use of EEG
signals which were collected from multiple electrodes placed
across the scalp of each participant. The EEG electrodes are
typically fitted with a headcap and conductive gel in order to
achieve a low and stable impedance across the skin-electrode
interface. In contrast, the sensor montage employed by any
prospective EEG-steered hearing aid must be much more
discreet and easy to set-up. Ideally, it will consist of just a few
electrodes, and the device will not rely upon the application
of conductive gel, which dries out with time (thereby
changing the noise characteristics of the EEG sensors) and
can be difficult to apply properly for inexperienced users.
Promisingly, Ciccarelli et al. [20] have demonstrated that
dry-contact EEG systems for auditory attention decoding
can compete with gel-based systems, and Kappel and
colleagues [28] demonstrated that dry-contact in-the-ear EEG
can be used for unobstrusively measuring auditory evoked
potentials.

Currently, ear-centric sensor montages are popular choices
for wearable EEG-monitoring devices [29], [30], [31], [32].
It is already established that such ear-centric devices can
be used for long-term and discreet auditory monitoring, for
example by detecting steady-state or subcortical responses
to clicks and tones [33], [34], [35], [36]. In the context of
auditory attention decoding, two types of ear-EEG devices
have been studied: the concealed EEG (cEEG) device, which
employs a C-shaped array of around-the-ear electrodes; and
in-ear sensors, which sit entirely within the ear canal [15],
[16], [37]. In the study by Fiedler et al. [16], the authors
found that auditory attention could not be decoded with
significance when only in-ear electrodes were used. This
result is to be expected, since EEG recorded from electrodes
with a very small spatial separation has a very low signal-
to-noise ratio (SNR) [38], [39]. Instead of using in-ear
electrodes exclusively, Fiedler et al. proposed to reference
the in-ear electrodes to a nearby location on the scalp; the
FT7 location was identified as a promising candidate. The
decoding accuracies achieved in that study were similar to
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those achieved using a binaural cEEG montage in the study
by Holtze et al. [37].

In the study of Fiedler et al., the authors followed the
usual stimulus-reconstruction approach to decode auditory
attention to continuous speech in two-talkers conditions [16].
However, in place of the commonly-used temporal envelope
feature of speech, the authors made use of the onset envelope
feature. The onset envelope is the defined as the half-wave
rectified derivative of the temporal envelope, and therefore
captures the rising edges of the temporal envelope which are
predominantly driven by word and syllable onsets [40].

In this work, we demonstrate how a dry-contact, wirelessly
connected ear-EEG device can be used to decode the focus
of a listener’s auditory attention in two-talker competing-
speakers scenarios. The sensor configuration is similar to
that proposed by Fiedler et al. in that it consists of two in-
ear electrodes, and one adjacent scalp electrode. We adopt
three attention decoding algorithms: stimulus reconstruction
based on linear models and deep neural networks, and CCA.
We further provide a comparison of the attention decoding
performance when the temporal envelope feature is used,
versus when its onsets is used.

Il. MATERIALS AND METHODS

A. SUBJECTS AND STIMULI

Eighteen young, normal-hearing participants (median age:
23 years; 10 males, 8 females) took part in a selective
auditory attention experiment. The experimental protocol
was approved by the Imperial College Research Ethics
Committee (approval number 191C5388 No Al; approved
20™ September 2019).

The experiment consisted of 16 trials: during each trial,
participants were presented with two concurrent audiobook
chapters — one narrated by a male talker, and the other by
a female talker. The audiobooks were presented diotically
(i.e. without spatial separation) at a sampling frequency of
44.1kHz via Seinheiser HD450 headphones, which were
placed over the housing modules of the in-ear electrodes.
Participants were instructed to attend to one talker (male
or female), and to ignore the other. Each trial lasted for
approximately 150 seconds.

Across the entire experiment, audiobook material was
narrated by the same two talkers. Participants alternated
the focus of their attention between the two talkers every
four trials. Both speech streams were delivered at equal
intensity, with a calibrated sound pressure level of 75 dB SPL
(measured using a Briiel & Kjar type-4157 ear simulator).

B. EAR-EEG DEVICE DESCRIPTION

The ultra-wearable, wirelessly enabled ear-EEG device used
in this study consisted of two in-ear EEG sensors, one
external reference electrode, and a clip-on ground electrode.
The reference electrode was affixed to the scalp (see next
section), and the ground was clipped to the right earlobe. The
in-ear sensors incorporated custom conductive doped-silicon
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tips, offering a tactile feel similar to that of commercial
silicone earphone tips. Signal amplification electronics were
housed in bilateral modules located just outside the ear
canals. These modules also integrated microphones and 9-
axis inertial measurement units (IMUs), which can be used to
denoise electrophysiological signals as demonstrated in prior
work from our group [41], [42]. An additional lightweight
module housing the Bluetooth transmitter rested comfortably
on the participants’ shoulders.

All sensor signals were sampled at 256 Hz. While the IMU
data were not utilized in this study, the microphones captured
the mixed speech audio during stimulus presentation. These
recordings were used offline to time-align the original audio
data with the EEG signals via a cross-correlation-based
method. Note that the microphone signals were not used
for further analysis; instead, features were extracted directly
from the original audio data, as described in the proceeding
section. Additional information about the device is available
upon request.!

C. EAR-EEG DATA ACQUISITION

Dry-contact electrodes were inserted into the ear canals,
and the external reference electrode was taped to the lower
left forehead (at the FT7 location in the 10-20 system).
The ground electrode was clipped to the right earlobe. This
configuration yielded one bilateral (cross-head) and one
unilateral EEG channel.

The FT7 reference location was chosen based on findings
by Fiedler et al. [16], who reported that reference electrodes
placed too close to the in-ear sensors achieved very poor
attention decoding accuracies. In pilot recordings, we found
that placing the reference electrode on the left mastoid led to
insignificant attention decoding accuracies, which was also
reported by Fiedler et al. (see supplementary information
for [16].)

Participants tolerated the ear-EEG setup well, with no
major discomfort reported. The most common issue related
to the tightness of the Sennheiser headphones, which pressed
against the outer ear and occasionally caused mild discomfort
near the end of the session. To improve comfort and
mechanical stability, the in-ear tips were available in three
sizes (small, medium, and large). Once inserted, the earpieces
remained remarkably secure and did not require adjustment
during the session.

As with other ear-EEG setups, the device was sensitive
to movement-related artifacts such as those arising from
mastication, swallowing, and electro-ocular activity. To min-
imize these, participants were encouraged to sit still and to
limit unnecessary movements. In our experience, overly strict
instructions to avoid movement can cause discomfort and
may impair task performance. For this reason, we adopted
a more flexible approach, allowing participants to move if
needed to remain comfortable and focused throughout the
task.

14 mandic@imperial.ac.uk
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FIGURE 1. Overview of the experiment and analysis protocols. a) Participants listened to a male voice and a female voice which narrated two distinct
audiobooks at the same time. They were asked to direct their attention to one of the voices, and to ignore the other. b) The dry-contact EEG sensor
montage employed in this work consisted of two in-ear electrodes which were referenced to the FT7 scalp channel, and a clip-on ground electrode which
was attached to the right earlobe. c) Participants listened to four short stories, each of which was split into four trials of approximately 2.5 minutes in
length. The to-be attended speaker alternated with each story. A nested-cross-validation procedure was used to train and test the attention decoders:
data from each trial was held-out in turn; the remaining data were split into five folds. Four of those folds were used to train attention decoders with
different hyperparameters, and the remaining fold was used to select the best hyperparameter configurations.

D. SIGNAL PRE-PROCESSING
We related the EEG recordings to the temporal envelopes
and the onset envelopes of each speaker separately. There are
several types of temporal envelope which have been explored
in the literature; we used the auditory-inspired envelope first
proposed by Biesmans et al. [43]. This envelope is calculated
by filtering the audio signals into 28 sub-bands via a
gammatone filterbank; we used the implementation provided
in the Brian 2 Hears v0.9.2 python package [44]. The
centre frequencies of the filterbank are spaced equidistantly
between 50Hz and 5kHz on an equivalent rectangular
bandwidth scale. The signal in each sub-band is then half-
wave rectified, and the resulting signals are averaged together
to form a stimulus envelope. As in the study by Fielder et al.
[16], the onset envelope feature was formed by half-wave
rectifying the first derivative of the temporal envelope feature.
In practice, this involved taking the difference between
consecutive samples of the temporal envelope feature, and
setting negative values to zero. Both features were resampled
to 64 Hz after the application of an anti-aliasing boxcar filter.
The EEG signals were preprocessed by first band-passing
them from 0.5 Hz to 8 Hz (Type-2 Hamming-sinc FIR filter
of order 1691 with a —6 dB stopband attenuation at 0.25 Hz
and at 10 Hz). The EEG and envelope signals were finally
resampled to a sampling frequency of 64 Hz and standardised
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across the time dimension by removing the mean of each time
series and dividing by its standard deviation.

E. FORWARD MODELS

Forward models, known also as temporal response functions
(TRFs), are estimates of the impulse response functions
which relate the EEG signals recorded from each channel to
a particular feature present in the speech stimulus [45]. The
features that we considered in this case were the temporal
envelope of speech as well as its onsets.

In practice, TRFs can be estimated by fitting FIR filters
to predict the EEG signals from the speech-feature signals,
with the filter coefficients themselves representing the TRF
estimates. We used 160 filter taps, with each corresponding
to a response latency ranging from —1s (pre-stimulus) to
1.5s (post-stimulus). Following Biesmans et al. [43], the
ridge regularisation parameter of each TRF was selected as
the mean eigenvalue of the speech-feature autocovariance
matrix. The TRFs were estimated using a cross-validation
procedure: for each participant, data from one of the 16 trials
was held-out for evaluation. A TRF was then estimated using
the data from the remaining 15 trials. Overall, 16 TRFs
were fitted per-participant using this procedure, which were
averaged in order to produce a single TRF per participant.
In this way, we fitted distinct TRFs for each EEG channel,
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each stimulus feature (the speech envelope as well as its
onsets), and each speaker (the attended speaker and the
ignored speaker). In order to assess whether the TRFs were
influenced by selective attention, we also formed ‘difference
TRFs’ by subtracting the ignored-speaker TRFs from the
attended-speaker TRFs.

It is important to make sure that the TRFs are meaningful
before interpreting their coefficients. To this end, a single-
sample permutation-based cluster test was used to test
whether the instantaneous power of the TRF coefficients
was statistically different to random chance. First, a set of
null-TRFs was constructed by repeated the cross-validation
feature described above, but with temporally misaligned EEG
signals and speech-feature signals. We repeated this proce-
dure using 500 different temporal misalignments, yielding
500 null-TRFs per participant, per held-out trial. Temporal
clusters in the TRFs were formed by marking samples at
which the TRFs’ instantaneous power exceeded the 99%
percentile of the instantaneous power distribution obtained
from the null-TRFs. The size of the largest cluster formed the
test statistic of the permutation-based cluster analysis. A null
distribution for this test statistic was formed by randomly
permuting the signs of the participant’s TRFs prior to
averaging them; we used 1000 separate permutations to form
this distribution. Although the cluster-based permutation tests
only test the null hypothesis that each TRF as a whole
is different to random chance, clusters with low p-values
can still be visualised and interpreted: we retained and
inspected all clusters with a p-value less than p = % (i.e.
we Bonferroni corrected for the 12 TRFs shown in Figure 2.)

F. LINEAR BACKWARD MODELS

Like forward models, linear backward models are FIR filters
which relate the EEG recordings to features of the auditory
stimuli (in this case, the envelopes and onset envelopes of
the competing speech streams). However, unlike forward
models, backward models predict the speech features from
the EEG recordings. The same algorithm (regularised ridge-
regression) was used to fit the backward models: in this case,
both EEG channels were used to predict speech features,
and we considered 64 filter taps corresponding to latencies
between O's to 1s. In other words, EEG samples which were
delayed up to 1 s relative to the audio stimulus were used to
predict the speech features.

We computed participant-specific linear backward models
and tuned the ridge regularisation parameter using the nested
cross-validation procedure outlined in Figure 1. Data from
each trial was held-out in turn for the purpose of evaluating
the final models. The remaining data was split into five
equally-lengthed folds; each fold was held-out in turn, and
the remaining four folds were used to train 19 models
with regularisation parameters spaced equally on a log scale
between 10~ and 10°. The model which achieved the highest
correlation coefficient on the held-out fold was submitted for
final evaluation on the held-out trial. As with the forward
models, we fitted backward models for each speech feature
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and each competing speaker. A null distribution for the
correlation coefficients was constructed by correlating the
reconstructed speech features from a particular testing trial
against the actual speech features taken from other trials.

G. CNN-BASED BACKWARD MODELS

The CNN-based backward models were direct analogues of
the linear backward models in the sense that they used a
temporal window of 2-channel EEG recordings, of 1s in
duration, to reconstruct the speech features which occurred
at the onset of the temporal window. However, as universal
function approximators, the CNN-based backward models
implement non-linear mappings between the EEG recordings
and the speech-feature signals, unlike the linear backward
models [46]. This means that they may be better placed to
account for the fundamentally non-linear nature of the human
auditory system [22].

The CNN architecture used in this work consists of
several convolutional blocks which are linked together in a
feed-forward manner with skip connections. Each convolu-
tional block consists of a convolutional layer, followed by
a rectified linear unit (ReLU) activation function, a batch
normalisation (BatchNorm) layer, and an average pooling
layer. Convolutional layers of artificial neurons act as
pattern detectors, since they implement a set of learned
multi-channel matched filters; by sequentially stacking
convolutional layers, CNNs can detect complex hierarchical
patterns [47]. Non-linear activation functions such as the
ReLU are essential elements of artificial neural networks
which allow them to approximate non-linear functions [46],
[48]. BatchNorm performs a learned normalisation of the
outputs of the convolutional layer, and has been reported
to lead to faster and more stable training of CNNs [49],
[50]. Average pooling layers perform downsampling on their
inputs through averaging adjacent temporal samples. Since
some studies in EEG decoding have reported improved
performance when skip connections are used, we utilised
them here [25], [51]. After the last convolutional block,
a linear combination of the transformed EEG signals is taken
to produce an estimate of the envelope (or its onsets) of the
attended speech stream.

Participant-specific CNNs were trained using the same
nested cross-validation scheme as the linear backward
models (see Figure 1). The parameters of the CNNs were
tuned using the Adam optimiser with a learning rate of
0.001 [52]. Using the inner cross-validation loop, we tuned
two hyperparameters: the kernel size of the convolutional
layers (3 or 5) and the number of convolutional blocks (1,
2 or 3).

H. AUDITORY ATTENTION DECODING VIA BACKWARD
MODELS

The following procedure was used to perform auditory
attention decoding using both types of backward models.
Data from the held-out trials were first split into temporal
segments of lengths ranging from 0.1s to 30s. There was
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a 1s hop length between adjacent segments. For each
segment, we obtained reconstructed speech features from
the attended-speaker backward models, and these were
correlated against the corresponding features derived from
both the attended and ignored speech streams. The difference
in correlation coefficients, Ap = pattended — Pignored» served
as a marker of selective auditory attention. A null distribution
for the attention markers was obtained by correlating the
reconstructed speech features from each particular segment
with the actual speech-features corresponding to a different,
randomly selected segment. Single-tailed, unpaired t-tests
were used to compare the attention markers against the null
markers for each participant.

I. CANONICAL CORRELATION ANALYSIS
Canonical correlation analysis applies linear filters to both
the EEG as well as the speech-feature signals, in order to yield
new signals, or ‘canonical components’, which are maximally
correlated. Because of this, CCA can be considered as the
simultaneous application of forward and backward models.
The CCA algorithm yields multiple pairs of canonical com-
ponents, of which the first pair are the most highly correlated,
the second pair are the next most highly correlated, and
so on. Importantly, different pairs of canonical components
are mutually uncorrelated, i.e. neither of the first pair of
components are correlated with either of the second, et cetera.
In Geirnaert et al. [14], the authors used CCA to perform
auditory attention decoding by performing the following
steps: first, they trained the CCA algorithm to maximise the
correlation between the EEG signals and the speech envelope
of the attended speaker. Then, they passed the EEG signals
and corresponding attended and ignored speech envelopes
through the algorithm, obtaining two vectors of correlation
coefficients pattended and Pignored; these correspond to the
attended and ignored speech streams respectively. Finally,
they trained a linear classifier (linear discriminant analysis,
LDA) to distinguish between the correlation difference vec-
tors Pattended — Pignored and Pignored — Pattended; thus eStimating
the identity of the attended speaker. Here, we trained CCA-
based attention decoders in same fashion as Geirnaert et al.
using the nested cross-validation procedure described above.
We trained the LDA classifiers on correlation difference
vectors derived from short temporal speech/EEG segments of
5s in duration. As with the backward models, we evaluated
the CCA-based algorithms using various segment durations
with a 1s hop length between segments. The number of
canonical components to consider (i.e. the dimensionality of
the correlation difference vectors) was tuned via the inner
cross-validation loop. Following Geirnaert et al., we did not
perform any dimensionality reduction on the original signals
prior to applying the CCA algorithm.

Ill. RESULTS
A. FORWARD MODELS

Temporal response functions were fitted to relate the EEG
recordings to the speech envelopes and their onsets. The
TRFs were estimated for both the attended speaker and the

VOLUME 13, 2025

ignored speaker. In order to assess whether the TRFs were
modulated by selective attention, we formed difference TRFs
by subtracting the ignored speech TRFs from the attended
speech TRFs.

Single-sample cluster-based permutation tests revealed
that all of the TRFs and difference TRFs yielded patterns
of instantaneous power which were significantly different
to random chance. The temporal response functions for the
attended and ignored speakers are depicted in the first two
rows of Figure 2. They exhibit morphologies which are
typical of TRFs obtained in higher-density EEG studies,
with clear and significant components around latencies of
100ms and 200ms. The onset envelope TRFs also show
pronounced activity at a much later latency of around 500 ms.
The bottom row of Figure 2 shows the difference TRFs.
For the envelope feature, the amplitude of the first two peaks
of the unilateral-channel TRF are significantly modulated by
selective attention. As for the onset envelope feature, the first
positive peak of both the unilateral and bilateral channel TRFs
is significantly modulated by selective attention. In contrast,
there is no significant attentional modulation of the later
components.

B. LINEAR BACKWARD MODELS
Linear backward models were fitted to predict features of the
attended and ignored speech streams from the two-channel
EEG signals. Correlation coefficients for each held-out trial
were averaged for each participant, and the results are shown
in Figure 3a. All eight groups of correlation coefficients have
means which are statistically greater than their corresponding
null distribution (all p <« 0.0001; single-tailed unpaired
t-tests with Bonferroni correction). The models which were
trained using features from the attended speech stream
produced reconstructed features which were more highly
correlated with features of the attended speech stream than
those of the ignored speech stream (p < 0.0001 for both the
envelope feature, and its onsets; single-tailed paired t-tests.)
To further investigate how the attended-speaker models
could be used for practical auditory attention decoding,
we divided each held-out trial into short temporal segments
of 5s in duration with a 1-second hop length. Markers of
selective auditory attention were derived from these segments
using the procedure outlined in Section II-H. To assess
whether these markers were informative at the level of
individuals, we computed the attention decoding accuracy for
each participant. The results are shown in Figure 3b, which
also includes the upper 95% confidence limit of a random
binary classifier as a reference. When calculating the upper
limit of this classifier, we considered n independent trials
of a Bernoulli random variable, where n was taken as the
maximum number of non-overlapping 5 s windows available.
When using the onset envelope feature, all 18 participants
achieved decoding accuracies above this reference threshold.
In contrast, three participants did not surpass this threshold
when the envelope feature itself was used.
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FIGURE 2. Temporal response functions for both the uni-lateral (blue) and bi-lateral (red) EEG channels. The first column shows TRFs computed from the
temporal speech envelopes, and the second the onset-envelope TRFs. The first two rows show the grand-average TRFs for attended and ignored speech,
respectively, and the bottom row shows the difference between the attended and ignored TRFs. Black lines represent null-TRFs, which were computed
after temporally misaligning the EEG and speech-feature signals. Solid red and blue bars indicate temporal clusters with p-values smaller than 0.05/12,

as calculated through a cluster-based permutation test.

C. COMPARISON OF DECODING ALGORITHMS

The three attention decoding algorithms were evaluated
using segment lengths ranging from 0.1s to 30s. For each
algorithm and speech feature, the mean attention decoding
accuracy is plotted against segment length in Figure 4a.
Overall, the mean accuracies lie above the chance level
(defined as the 95" percentile of a random binary classifier)
across a wide range of window sizes.

The decoding algorithms which utilised the onset
envelopes achieved higher mean decoding accuracies than
those based on the envelopes themselves. We tested whether
these differences were significant using single-tailed, paired
t-tests (Bonferroni-corrected for multiple comparisons), for
both a short segment length of 5 s as well as a longer segment
length of 30s. For the 5s window, we only detected a
significant difference between the two CCA-based decoders.
For the longer window length of 30s, however, significant
differences emerged between the envelope-based decoders
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and the onset-envelope-based decoders for all three decoder
types. These results are shown in Figure 4b.

In general, the CCA decoders appeared to achieve the
highest mean decoding accuracies, and the CNN-based
decoders achieved the lowest. For each speech feature (onset
envelope, and envelope), we performed repeated-measures
ANOVA tests to assess whether there were any statistically
significant differences between the three decoders. Since we
performed these tests for both the 30s segment length and
the 5 s segment length, we performed a total of four ANOVA
tests; none of these tests returned a positive result. The results
of this analysis are also presented in Figure 4b.

IV. DISCUSSION AND CONCLUSION

We have demonstrated that our novel, ultra-wearable ear-
EEG device captures auditory responses to the envelope of
speech (and its onsets) from normal-hearing human listeners.
The recorded responses were shown to be modulated by the

VOLUME 13, 2025



M. D. Thornton et al.: Comparison of Linear and Nonlinear Methods for Decoding Selective Attention

IEEE Access

Linear backward model reconstruction scores

0.08 1 [0 Onset envelope
I Envelope

0.06

0.04

0.02 4

Pearson correlation

0.00. ................................ ~

—0.02 1 p<0.001

D <0.001
-0.04

Att. rﬁodel Att. n'qodel Ign. rﬁodel Ign. rlnodel
att. speaker ign. speaker att. speaker ign. speaker

(a)

0 Attention decoding accuracy (5 s segments)

3 Onset envelope
Il Envelope
651 —--- Random classifier 95% CI

60 -

551

Accuracy [%]

50

123456 7 8 9101112131415161718
Participant
(b)

FIGURE 3. Performance of the linear backward models. a) The reconstructed speech features produced by the models were correlated against the
actual features of both the attended and ignored speech streams. Correlation coefficients were calculated for each testing trial and participant, and the
average correlation coefficients for each participant are displayed as black markers. b) Estimates of the attended talker were inferred
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b) The attention decoding accuracies were broken down for individual participants for a longer segment length of 30 s (top) and a shorter window
length of 5 s (bottom), and the mean attention decoding accuracies of different algorithms were assessed for statistical differences using single-tailed,

paired t-tests.

focus of the listeners’ selective attention to speech. We were
therefore able to decode which of the two speakers the
participants were attending to, using a variety of auditory
attention decoding algorithms.

We assessed young, normal-hearing participants in our
study because this population generally finds the auditory
attention task less cognitively demanding—particularly in the
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absence of spatial separation between competing talkers—
and is better able to tolerate longer experimental sessions.
However, our ultimate target population for a prospective
EEG-steered hearing aid includes hearing-impaired individ-
uals, who are often older adults. There is broad consensus
in the literature that both older adults and individuals with
hearing impairment exhibit stronger neural tracking of the
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speech envelope compared to young, normal-hearing listen-
ers (for areview, see Gillies et al. [53]), Moreover, in listeners
with mild to moderate hearing loss, this enhanced neural
tracking appears to be more strongly modulated by attention,
leading to improved attention decoding accuracies [54].
These findings suggest that the algorithms developed and
validated in young, normal-hearing participants could gen-
eralize effectively to older or clinical populations, and may
even benefit from enhanced neural envelope tracking in those
groups.

Nevertheless, further work is needed to test these algo-
rithms in hearing-impaired individuals and under more
ecologically valid conditions, including real-world acoustic
environments with background noise. In particular, it will be
important to characterise the effect of the relative intensities
of target and distracting speech on attention decoding accu-
racies. Such studies will be essential to assess the robustness
and practical utility of EEG-based attention decoding in
everyday listening scenarios, and would provide an excellent
opportunity to evaluate how older and hearing-impaired users
perceive ear-EEG technology in terms of comfort, usability,
and acceptability.

Despite our simplified scenario in which listeners attended
to one talker whilst ignoring another, it is important to note
that real-world acoustic scenarios could involve a multitude
of interfering talkers and other sources of background noise.
Predictably, the error rate of an attention decoder compounds
when the number of candidate speech signals is increased: in
a four-talker auditory attention decoding study, Yan et al. [55]
reported an accuracy of just 40% when they used a 5-second
window length for their linear backward model. Whilst
exceeding the chance level of 25% by a considerable margin,
their decoder would more often make incorrect classifications
than correct classifications. If the error could be significantly
reduced in two-talker scenarios, then it would be expected to
compound more slowly as additional distractors are added.

However, auditory attention decoders do not need to
be optimised for an arbitrary number of talkers. In real-
world acoustic scenarios it is appropriate to consider up to
several salient voices superposed onto multi-talker babble
noise and other environmental sounds. Considering exactly
this scenario, Das et al. [56] showed that at moderate
SNRs, background babble noise can actually improve the
accuracy of an attention decoder in a two-talker scenario.
This could be due an increased attentional effect or stronger
envelope tracking due to the increased difficulty of the
attention task. However, the attention decoding accuracy
quickly deteriorated at lower SNRs. This falls broadly in line
with studies which report a degradation in neural envelope
tracking when the intelligibility of the speech stimulus is
decreased [57], [58], [59]. An effective EEG-steered hearing
aid should be able to mitigate this by maintaining high speech
intelligibility even in adverse listening conditions; this could
be facilitated in part by the sophisticated noise-reduction
capabilities of conventional hearing aids [57], [60].
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Temporal response functions obtained from the ear-EEG
device exhibit a clear morphology which is consistent with
the existing scalp-EEG-based literature, with strong compo-
nents at latencies of around 100-200 ms. The onset-envelope
TRFs also exhibit broad regions of activity at a much later
latency of around 500 ms which was not reported in the
ear-EEG study of Fiedler et al. [16]. This is likely because the
high-pass filter which we pre-processed the EEG signals with
had a much lower cutoff frequency than that which was used
in that study (0.5 Hz vs 2 Hz). This means that our TRFs are
influenced by contributions from very low-frequency cortical
tracking.

Linear backward models were trained to relate the
two-channel EEG recordings to speech features of the
attended speaker and the ignored speaker. For both speech
features, the attended-speaker models better predicted the
features of the attended speech stream than those of the
ignored speech stream. By contrast, the ignored-speaker
models achieved similar correlation scores for both speakers.
We therefore used the attended-speaker models as auditory
attention decoders. Markers of selective auditory attention
were formed by subtracting the correlation coefficients
obtained for the ignored speech stream from those obtained
for the attended speech stream, and an attention decoding
accuracy for each participant was derived from their attention
markers. We found that the onset-envelope-based attention
decoders produced statistically meaningful attention markers
for all 18 participants when a short, practical segment length
of 5s was used, with the corresponding attention decoding
accuracies exceeding the upper 95% confidence limit of a
random binary classifier. For the envelope-based decoders,
decoding accuracies of three participants did not exceed this
threshold, with two participants showing very low attention
decoding scores of around 50%. Overall, we observed that the
onset-envelope-based decoders were more successful than
the envelope-based decoders, and there were no clear outlying
scores in the data.

Three types of algorithms were used to perform auditory
attention decoding: the linear backward models; non-linear
CNN-based backward models; and CCA-based decoders.
Overall, the attention decoding accuracies were not that
high, lying in the region of 55% for short segment lengths
of 5s in duration. These results are comparable to those
reported by Fiedler et al. [16], as well as the scalp-EEG
study by Narayananet al. [61], who simulated miniature
EEG montages by selecting subsets of electrodes from a
255-channel system. These comparisons suggest that our dry-
contact ear-EEG system records signals with a signal-to-noise
ratio comparable to that of gel-based systems. Moreover, ear-
EEG-based decoders achieve performance levels similar to
those of low-density scalp-based decoders, with the added
advantages of increased wearability and discretion.

Clearly, devices such as smart hearing aids which rely
on EEG-based auditory attention decoding are unlikely to
provide any benefit to the user unless the attention decoding
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accuracy could be significantly enhanced. One possibility
would be to employ state-space models to obtain less noisy
estimates of the attended speaker label from the original
attention markers: Akram et al. [62], [63] developed an
algorithm which employs a Kalman filter to denoise the
correlation-based attention markers, leading to a moderate
improvement in attention decoding accuracy; Hjortkjaer et al.
[27] proposed an alternative state-space model which weights
the importance of incoming attention markers based on the
recent performance of the underlying attention decoder; many
more possibilities exist.

An orthogonal approach to improving the attention decod-
ing accuracy of a hearing aid system, for example, could
be by leveraging the information available in other sensing
modalities via sensor fusion. When a listener is able to
see the target talker, the direction of their gaze provides a
salient marker of auditory attention. This can be monitored
through modern eye-tracking systems, which can be built into
a glasses-like form factor, or even more unobtrusively, mea-
sured via electro-oculography (EOG) signals. Skoglund et al.
[64] recently demonstrated an in-ear EOG system which
could decode auditory attention via detecting saccades to the
left or right; their system achieved an accuracy of 68%, which
is comparable to our EEG-based system. A composite system
could potentially achieve much higher attention decoding
accuracies.

In naturalistic listening, however, people do not always
look in the direction of a target speaker, and more natural cues
for selective auditory attention may be desired. Recent studies
have suggested that more subtle patterns of eye activity,
such as blink rate and microsaccades, may correlate with
auditory attention [65], [66], [67]. While these studies support
the potential of eye-based attention markers, they generally
report small effect sizes and are likely to have very low
attention decoding accuracies, especially if recorded from
ear-based sensors. However, future work should investigate
whether integrating these markers of selective auditory
attention with ear-EEG-based markers in a sensor fusion
algorithm could lead to improved decoding accuracies.

In addition to decoding accuracy, latency and computa-
tional overhead are critical factors for real-time applications
of auditory EEG decoders. All attention decoding models
considered in this study rely on a fixed window length (e.g.,
5 seconds), which imposes an inherent delay—data must first
be accumulated over this window before an attention estimate
can be produced. Reducing the window length typically
degrades decoding accuracy, unless the underlying decoder
is also paired with some kind of state-space filter [27], [63],
[68]. During preprocessing, we filtered EEG signals in the
0.5—8 Hz band, a range commonly associated with speech
envelope tracking. While digital FIR filters can introduce
substantial latency due to their high filter order, real-time
implementation remains feasible by using IIR filters, which
offer comparable attenuation with significantly lower latency.
In hardware-constrained scenarios, analog IIR filters may
also be implemented directly within hearing devices. From
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a computational standpoint, the linear models used in this
study (e.g., stimulus reconstruction via linear regression and
canonical correlation analysis) are highly efficient in terms
of both processing time and memory usage. These models
have been shown in prior work to operate effectively in
near-real-time [27], [69], [70]. In contrast, neural network
models—such as the lightweight CNN employed here—
require greater computational resources. Efficient real-time
deployment of such models may depend on the use of
dedicated hardware accelerators (e.g., on-chip Al engines)
or offloading computations to a companion device, such as
a smartphone.

We did not detect any significant difference in mean
accuracy between the three types of decoding algorithm
for short segment lengths of 5s in duration, nor for longer
segment lengths of 30s. It is possible that with only
18 participants, we did not have enough statistical power to
detect such a difference. Based on the effect sizes that we
observed, we estimate that around 50 participants would have
been required to detect statisticaly significant differences—
in case these were indeed significant—between the attention
decoding accuracies of the decoders for a 30 s window size,
and around 90 would have been required for the 5 s window
size. Nevertheless, even if the observed differences were in
fact statistically significant, they are, at a few percentage
points, presumably be too small to be practically relevant.

The deep-learning-based decoders achieved lower mean
decoding accuracies than their linear counterparts for all
segment lengths, which contrasts with the recent scalp-EEG
literatures [22] and [23]. This could be due to the that fact
that the ear-EEG signals offered a poorer SNR, since the
dry-contact electrodes were placed in locations which are
prone to mastication artifacts; the CNNs may therefore have
overfitted to artifactual signals during training.

The choice of speech feature (temporal envelope ver-
sus its onsets) did impact the final attention decoding
accuracy. These speech features were based on biologically-
inspired heuristics, and it is possible that by refining
them (and possibly tailoring them to individuals, since
Figure 3 shows that sometimes one feature is better than
another for some participants), further improvements in
auditory attention decoding may be made. Such an approach
could employ techniques of deep learning to approximate
the representations of speech which are present in ear-
EEG recordings, following similar approaches to mod-
elling invasively-measured electrophysiological responses to
speech [71].
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