Research

 

Tobias Reichenbach’s profile on Google scholar is here.

The code for some of our projects can be obtained on GitHub.

Research Papers

  1. M. Thornton, Jonas Auernheimer, Constantin Jehn, D. Mandic, T. Reichenbach,
    Detecting gamma-band responses to the speech envelope for the ICASSP 2024 Auditory EEG Decoding Signal Processing Grand Challenge,
    submitted [aRxiv]
  2. M. Thornton, D. Mandic, T. Reichenbach,
    Decoding of selective attention to speech from ear-EEG recordings,
    submitted [aRxiv]
  3. M. Thornton, D. Mandic, T. Reichenbach,
    Decoding envelope and frequency-following EEG responses to continuous speech using deep neural networks,
    IEEE O. J. Sign. Proc. in press [bioRxiv]
  4. M. Saiz-Alia, P. Miller, T. Reichenbach
    Speech-DPOAEs for probing speech processing in the inner ear,
    AIP Conf. Proc. 3062, 030010 (2024) [pdf]
  5. M. Keshavarzi, M. Salorio-Corbetto, T. Reichenbach, J. Marriage, B. C. J. Moore,
    Development of new open-set speech material for use in clinical audiology with speakers of British English,
    Audiol. Res. (2024) 14:264 [pdf]
  6. A. Schüller, A. Schilling, P. Krauss, T. Reichenbach,
    The early subcortical response at the fundamental frequency of speech is temporally separated from later cortical contributions,
    J. Cogn. Neurosci. (2024) 36:475 [bioRxiv][pdf]
  7. A. Schüller, A. Schilling, P. Krauss, S. Rampp, T. Reichenbach,
    Attentional modulation of the cortical contribution to the frequency-following response evoked by continuous speech,
    J. Neurosci. (2023) 43:7429 [bioRxiv][pdf]
  8. P. Guilleminot, C. Graef, E. Butters, T. Reichenbach,
    Audiotactile stimulation can improve syllable discrimination through multisensory integration in the theta frequency band,
    J. Cogn. Neurosci. (2023) 35:1 [bioRxiv][pdf]
  9. Y. Mohammadi, C. Graversen, J. Ostergaard, O. K. Andersen, T. Reichenbach,
    Phase-locking of neural activity to the envelope of speech in the delta frequency band reflects differences between word lists and sentences,
    J. Cogn. Neurosci. (2023) 35:1301 [bioRxiv][pdf]
  10. E. Varano, P. Guilleminot, T. Reichenbach,
    AVBook, a high-frame-rate corpus of narrative audiovisual speech for investigating multimodal speech processing,
    J. Acoust. Soc. Am. (2023) 153:3130 [pdf]
    The complete AVBook corpus is available on Zenodo.
  11. M. Thornton, D. Mandic, T. Reichenbach,
    Relating EEG recordings to speech using envelope tracking and the speech-FFR,
    ICASSP 2023 – 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2023), 1-2. [bioarxiv] [pdf]
  12. M. Kegler, H. Weissbart, T. Reichenbach,
    The neural response at the fundamental frequency of speech is modulated by word-level acoustic and linguistic information,
    Front. Neurosci. (2022) 16:915744 [pdf]
  13. M. Thornton, D. Mandic, T. Reichenbach,
    Robust decoding of the speech envelope from EEG recordings through deep neural networks,
    J. Neur. Eng. (2022) 19:046007. [pdf]
    The Python code for the deep neural networks can be accessed here.
  14. P. Guilleminot, T. Reichenbach,
    Enhancement of speech-in-noise comprehension through vibrotactile stimulation at the syllabic rate,
    Proc. Natl. Acad. Sci. U.S.A. (2022) 119:e2117000119. [pdf]
  15. M. Wairagkar, M. R. Lima, D. Bazo, R. Craig, H. Weissbart, A. C. Etoundi, T. Reichenbach, P. Iyengar, S. Vaswani, C. James, P. Barnaghi, C. Melhuish, R. Vaidyanathan,
    Emotive response to a hybrid-face robot and translation to consumer social robots,
    IEEE Internet of Things J. (2022) 9:3174. [pdf]
  16. O. Etard, R. Ben Messaoud, G. Gaugain, T. Reichenbach,
    The neural response to the temporal fine structure of continuous musical pieces is not affected by selective attention,
    J. Cogn. Neurosci (2022) 34: 411. [bioRxiv]. [pdf]
    The code for relating the EEG data to music features can be accessed here. The EEG data are available on zenodo.
  17. E. Varano, K. Vougioukas, P. Ma, S. Petridis, M. Pantic, T. Reichenbach,
    Speech-Driven Facial Animations Improve Speech-in-Noise Comprehension of Humans
    Front. Neurosci. (2022) 15:781196. [pdf]
  18. M. Keshavarzi, T. Reichenbach, B. C. J. Moore,
    Transient Noise Reduction Using a Deep Recurrent Neural Network: Effects on Subjective Speech Intelligibility and Listening Comfort,
    Trends Hear. (2021) 25:1. [pdf]
  19. A. Kulkarni, M. Kegler, T. Reichenbach,
    Effect of visual input on syllable parsing in a computational model of a neural microcircuit for speech processing,
    J. Neur. Eng. (2021) 18:056055. [pdf]
  20. M. Keshavarzi, E. Varano , T. Reichenbach,
    Cortical tracking of a background speaker modulates the comprehension of a foreground speech signal,
    J. Neurosci. 41:5093 (2021). [pdf]
  21. M. Saiz-Alia, P. Miller, T. Reichenbach,
    Otoacoustic emissions evoked by the time-varying harmonic structure of speech,
    eNeuro (2021) 8:0428. [pdf]
  22. L. Sumner, J. Mestel, T. Reichenbach,
    Steady Streaming as a method for drug delivery to the inner ear,
    Scientific Reports (2021) 11:57. [pdf]
  23. M. Kegler, T. Reichenbach,
    Modelling the effects of transcranial alternating current stimulation on the neural encoding of speech in noise,
    Neuroimage (2021) 224:117427. [pdf]
  24. M. Saiz-Alia, T. Reichenbach,
    Computational modeling of the auditory brainstem response to continuous speech,
    J. Neur. Eng. (2020) 17:036035. [pdf]
  25. M. Keshavarzi, T. Reichenbach,
    Transcranial alternating current stimulation with the theta-band portion of the temporally-aligned speech envelope improves speech-in-noise comprehension,
    Front. Hum. Neurosci. (2020) 14:187. [pdf]
  26. T. Ota, F. Nin, S. Choi, S. Muramatsu, S. Sawamura, G. Ogata, M. P. Sato, K. Doi, K. Doi, T. Tsuji, S. Kawano, T. Reichenbach, H. Hibino,
    Characterisation of the static offset in the travelling wave in the cochlear basal turn,
    Pfl. Arch. Eur. J. Physiol. (2020) 472:625. [pdf]
  27. F. Vanheusden, M. Kegler, K. Ireland, C. Georga, D. Simpson, T. Reichenbach, S. L. Bell,
    Hearing aids do not alter cortical entrainment to speech at audible levels in mild-to-moderately hearing-impaired subjects,
    Front. Hum. Neurosci. (2020) 14:109. [pdf]
  28. M. Keshavarzi, M. Kegler, S. Kadir, T. Reichenbach,
    Transcranial alternating current stimulation in the theta band but not in the delta band modulates the comprehension of naturalistic speech in noise,
    Neuroimage (2020) 210:116557. [pdf]
  29. S. Kadir, C. Kaza, H. Weissbart, T. Reichenbach,
    Modulation of speech-in-noise comprehension through transcranial current stimulation with the phase-shifted speech envelope,
    IEEE Trans. Neur. Syst. Rehab. Eng. (2020) 28:23. [pdf]
  30. H. Weissbart, K. Kandylaki, T. Reichenbach,
    Cortical tracking of surprisal during continuous speech comprehension,
    J. Cogn. Neurosci. 32:155 (2020). [pdf]
    The EEG data, together with the corresponding speech features, are available in pre-processed form on figshare.com, as well as in raw format from zenodo.org. An exemplary script for computing TRFs can be obtained from figshare.com as well.
  31. M. Saiz-Alia, A. E. Forte, T. Reichenbach,
    Individual differences in the attentional modulation of the human auditory brainstem response to speech inform on speech-in-noise deficits,
    Sci. Rep. 9:14131 (2019). [pdf]
  32. Ghada BinKhamis, Antonio Elia Forte, Tobias Reichenbach, Martin O’Driscoll, and Karolina Kluk,
    Speech auditory brainstem responses in adult hearing aid users: effects of aiding and background noise, and prediction of behavioral measures,
    Trends in Hearing 23:1 (2019). [pdf]
  33. O. Etard and T. Reichenbach,
    Neural speech tracking in the theta and in the delta frequency band differentially encode clarity and comprehension of speech in noise,
    J. Neurosci. 39:5750 (2019). [pdf]
    Matlab code for the efficient computation of linear forward and backward models is on Github. Examples of the data can be found on Github as well, and the full dataset is available on zenodo.org.
  34. O. Etard, M. Kegler, C. Braiman, A. E. Forte, T. Reichenbach,
    Real-time decoding of selective attention from the human auditory brainstem response to continuous speech,
    Neuroimage 200:1 (2019). [pdf] [bioRxiv]
    The EEG dataset is available on zenodo.org.
  35. C. Braiman, E. A. Fridman, M. M. Conte, C. S. Reichenbach, T. Reichenbach, N. D. Schiff
    Cortical Response to the Natural Speech Envelope Correlates with Neuroimaging Evidence of Cognition in Severe Brain Injury,
    Curr. Biol. 28:1-7 (2018). [pdf]
  36. N. Ciganovic, R. L. Warren, B. Keceli, S. Jacob, A. Fridberger, T. Reichenbach,
    Static length changes of cochlear outer hair cells can tune low-frequency hearing,
    PLoS Comp. Biol. 14:e1005936 (2018). [pdf] [bioRxiv]
  37. A. E. Forte, O. Etard and T. Reichenbach,
    The human auditory brainstem response to running speech reveals a subcortical mechanism for selective attention,
    eLife 6:e27203 (2017). [pdf] [bioRxiv]
    Matlab code for the extraction of the fundamental waveform is on Github.
  38. C. Sidiras, V. Iliadou, I. Nimatoudis, T. Reichenbach and D.-E. Bamiou,
    Spoken word recognition enhancement due to preceding synchronized beats compared to unsynchronized or unrhythmic beats,
    Front. Neurosci. 11:415 (2017). [pdf]
  39. N. Ciganovic, A. Wolde-Kidan, T. Reichenbach,
    Hair bundles of cochlear outer hair cells are shaped to minimize their fluid-dynamic resistance,
    Sci. Rep. 7:3609 (2017). [pdf]
  40. R. L. Warren, S. Ramamoorthy, N. Ciganovic, Y. Zhang, T. Wilson, T. Reichenbach, A. L. Nuttall, A. Fridberger,
    Minimal basilar membrane motion in low-frequency hearing,
    Proc. Natl. Acad. Sci. U.S.A. 113:4303 (2016). [pdf]
  41. C. S. Reichenbach, C. Braiman, N. D. Schiff, A. J. Hudspeth, T. Reichenbach,
    The auditory-brainstem response to continuous, non-repetitive speech is modulated by the speech envelope and reflects speech processing,
    Front. Comp. Neurosci. 10:47 (2016). [pdf]
  42. T. Tchumatchenko, T. Reichenbach,
    A wave of cochlear bone deformation can underlie bone conduction and otoacoustic emissions,
    In Mechanics of Hearing: Protein to Perception, K. D. Karavitaki and C. P. Corey (eds).
    Am. Inst. Phys., Melville, NY, 060018 (2015). [pdf]
  43. T. Reichenbach, A. Stefanovic, F. Nin, A. J. Hudspeth,
    Otoacoustic emission through waves on Reissner’s membrane,
    In Mechanics of Hearing: Protein to Perception, K. D. Karavitaki and C. P. Corey (eds).
    Am. Inst. Phys., Melville, NY, 090008 (2015). [pdf]
  44. B. Meltzer, C. S. Reichenbach, C. Braiman, N. D. Schiff, A. J. Hudspeth, T. Reichenbach,
    The steady-state response of the cerebral cortex to the beat of music reflects both the comprehension of music and attention,
    Front. Hum. Neurosci. 9:436 (2015). [pdf]
  45. T. Reichenbach, A. J. Hudspeth,
    The physics of hearing: fluid mechanics and the active process of the inner ear,
    Rep. Progr. Phys. 77:7 (2014). [pdf]
  46. T. Tchumatchenko, T. Reichenbach,
    A cochlear-bone wave can yield hearing sensation as well as otoacoustic emission,
    Nat. Commun. 5:4160 (2014). [pdf]
  47. T. Reichenbach,
    Otoacoustic emission through waves on Reissner’s membrane and bone deformation,
    Proc. Forum Acust. (2014).
  48. A. Dobrinevski, M. Alava, T. Reichenbach, E. Frey,
    Mobility-dependent selection of competing strategy associations,
    Phys. Rev. E. 89, 012721 (2014). [pdf]
  49. F. Nin, T. Reichenbach, J. A. N. Fisher, A. J. Hudspeth,
    Contribution of active hair-bundle motility to nonlinear amplification in the mammalian cochlea,
    Proc. Natl. Acad. Sci. U.S.A. 109, 21076 (2012). [pdf]
  50. J. A. N. Fisher, F. Nin, T. Reichenbach, R. C. Uthaiah, A. J. Hudspeth,
    The spatial pattern of prestin-dependent cochlear amplification,
    Neuron 76, 989-997 (2012). [pdf]
  51. T. Reichenbach, A. J. Hudspeth,
    Frequency decoding of periodically-timed action potentials through distinct activity patterns in a random neural network,
    New J. Phys. 14, 113022 (2012). [pdf]
  52. T. Reichenbach, A. J. Hudspeth,
    Discrimination of low-frequency tones employs temporal fine structure,
    PLoS ONE 7, e45579 (2012). [pdf]
  53. T. Reichenbach, A. Stefanovic, F. Nin, A. J. Hudspeth,
    Waves on Reissner’s membrane: a mechanism for the propagation of otoacoustic emissions from the cochlea,
    Cell Reports 1, 374-384 (2012). [pdf]
  54. T. Reichenbach, A. J. Hudspeth,
    Unidirectional amplification as a mechanism for low-frequency hearing in mammals,
    AIP Conf. Proc. Vol. 1403, 507-512 (2011). [pdf]
  55. J. S. Schwarz, T. Reichenbach, A. J. Hudspeth,
    A hydrodynamic sensory antenna used by killifish for nocturnal hunting,
    J. Exp. Biol. 214, 1857-1866 (2011). [pdf]
  56. T. Reichenbach, A. J. Hudspeth,
    Unidirectional mechanical amplification as a design principle for an active microphone,
    Phys. Rev. Lett. 106, 158701 (2011). [pdf]
  57. A. Melbinger, T. Reichenbach, T. Franosch, E. Frey,
    Driven transport on parallel lanes with particle exclusion and obstruction,
    Phys. Rev. E 83, 031923 (2011). [pdf]
  58. S. Rulands, T. Reichenbach, E. Frey,
    Threefold way to extinction in populations of cyclically competing species,
    J. Stat. Mech. 105, L01003 (2011). [pdf]
  59. T. Reichenbach, A. J. Hudspeth,
    Dual contribution to amplification in the mammalian inner ear,
    Phys. Rev. Lett. 105, 118102 (2010). [pdf]
  60. A. A. Winkler, T. Reichenbach, E. Frey,
    Coexistence in a one-dimensional cyclic dominance process,
    Phys. Rev. E 81, 060901(R) (2010). [pdf]
  61. B. Andrae, J. Cremer, T. Reichenbach, E. Frey,
    Entropy production of cyclic population dynamics,
    Phys. Rev. Lett. 104, 218102 (2010). [pdf]
  62. T. Reichenbach, A. J. Hudspeth,
    A ratchet mechanism for amplification in low-frequency mammalian hearing,
    Proc. Natl. Acad. Sci. U.S.A. 107, 4973-4978 (2010). [pdf] [Animation]
  63. J. Cremer,T. Reichenbach, E. Frey,
    The edge of neutral evolution in social dilemmas,
    New J. Phys. 11, 093029 (2009). [pdf]
  64. M. Berr, T. Reichenbach, M. Schottenloher, E. Frey,
    Zero-one survival behavior of cyclically competing species,
    Phys. Rev. Lett. 102, 048102 (2009). [pdf]
  65. T. Reichenbach, E. Frey,
    Instability of spatial patterns and its ambiguous impact on species diversity,
    Phys. Rev. Lett. 101, 058102 (2008). [pdf]
  66. T. Reichenbach, T. Franosch, E. Frey,
    Domain wall delocalization, dynamics and fluctuations in an exclusion process with two internal states,
    Eur. Phys. J. E 27, 47-56 (2008). [pdf]
  67. T. Reichenbach, M. Mobilia, E. Frey,
    Self-organization of mobile populations in cyclic competition,
    J. Theor. Biol. 254, 368-383 (2008). [pdf]
  68. T. Reichenbach, M. Mobilia, E. Frey,
    Stochastic effects on biodiversity in cyclic coevolutionary dynamics,
    Banach Center Publications Vol. 80, 259-264 (2008). [pdf]
  69. M. Mobilia, T. Reichenbach, H. Hinsch, T. Franosch, E. Frey,
    Generic principles of active transport,
    Banach Center Publications Vol. 80, 101-120 (2008). [pdf]
  70. J. Cremer, T. Reichenbach, E. Frey,
    Anomalous finite-size effects in the Battle of the Sexes,
    Eur. Phys. J. B 63, 373-380 (2008). [pdf]
  71. T. Reichenbach, M. Mobilia, E. Frey,
    Noise and correlations in a spatial population model with cyclic competition,
    Phys. Rev. Lett. 99, 238105 (2007). [pdf]
  72. T. Reichenbach, M. Mobilia, E. Frey,
    Mobility promotes and jeopardizes biodiversity in rock-paper-scissors games,
    Nature 448, 1046-1049 (2007). [pdf] [Movie I (9.5 MB)] [Movie II (9.5 MB)]
    F1000 Logo selected by the Faculty of 1000 Biology
  73. T. Reichenbach, E. Frey, T. Franosch,
    Traffic jams induced by rare switching events in two-lane transport,
    New J. Phys. 9 (2007) 159. [pdf]
  74. T. Reichenbach, M. Mobilia, E. Frey,
    Coexistence versus extinction in the stochastic cyclic Lotka-Volterra model,
    Phys. Rev. E 74, 051907 (2006). [pdf]
  75. T. Reichenbach, T. Franosch, E. Frey,
    Exclusion processes with internal states,
    Phys. Rev. Lett. 97, 050603 (2006). [pdf]
  76. T. Reichenbach,
    Retarded functions in noncommutative theories,
    Phys. Lett. B 612, 275 (2005). [pdf]
  77. T. Reichenbach,
    Violation of remaining Lorentz symmetry in the approach of time-ordered perturbation theory to space-time noncommutativity,
    Phys. Lett. B 606, 403 (2005). [pdf]

 

Book Chapters

 

Patents

  • T. Reichenbach, A. J. Hudspeth,
    Unidirectional mechanical amplification in a microphone,
    pending (2011).

Popular Science Articles

T. Reichenbach, E. Frey,
Evolution unter dem Mikroskop,
Physik Journal 8 (10), 27-32 (2009). [pdf]